
Box 5501
SE-114 85 Stockholm

ISSN 1104-1773info@befoonline.org • www.befoonline.org
Besöksadress: Storgatan 19

BeFo Report 111

SIMULATOR FOR TRAINING ROBOT

OPERATORS

– Virtual education in shotcrete operation

Petter Börjesson

Mattias Thell

319050_Omslag_111_ny m loggo flyttad_3mm.indd 1 2011-12-28 16.34

CD_111_2011.indd 1 2011-12-30 08.43

Cover Figure:
Scene rendered with different effects. From top left to bottom right.
1. Only ambient lighting. 2. Added directional lighting. 3. Added SSAO.
4. Added shadow maps. (Figure 12 page 20).

319050_Omslag_111_ny m loggo flyttad_3mm.indd 2 2011-12-28 16.34

ROCK ENGINEERING RESEARCH FOUNDATION

STIFTELSEN BERGTEKNISK FORSKNING

SIMULATOR FOR TRAINING ROBOT
OPERATORS
– Virtual education in shotcrete operation

Simulator för träning av robotförare
– Virtuell utbildning för sprutbetongsoperatörer

Petter Börjesson
Mattias Thell
Chalmers University of Technology

BeFo Report 111
Stockholm 2011
ISSN 1104 – 1773
ISRN BEFO-R—111—SE

BeFo Report 111

I

Preface
Operator training is essential for handling advanced machinery and vehicles. For
many years training simulators have been used for pilots, and later for drivers of
heavy vehicles like loaders, rock drilling machines, wood harvesting machines etc.
Experience demonstrates considerable benefits from simulator training in decrease of
damage, accidents and increased efficiency. Today development and manufacturing of
training simulators for all kinds of advanced machinery has become an individual
business field.

However, up to now training simulators for shotcrete robot operators has not been
available. Shotcrete is used for rock reinforcement in tunnels, mines and other
applications. Shotcrete has demonstrated being more cost efficient compared to
concrete lining in many cases especially in hard rock environment. Shotcrete
application is a handicraft a demand skilled robot operators. Training in real
environment implies large costs and unsecure circumstances. Consequently shotcrete
operators would benefit from simulator training before operating in the real
environment.

Training of shotcrete robot operators comprise both handling the equipment and to
judge how this needs to be done based on intermediate parameters for the concrete to
stick to the surface to largest possible extent. Just like simulator training programs
shotcrete robot simulator training include exercises for evaluating operator level of
skill and performance.

This project has developed a simulator software program usable to educate shotcrete
robot operators. The idea was initiated by Tommy Ellison at BESAB and the
development was conducted by a project group at Chalmers Visualization Technology
by Petter Börjesson and Mattias Thell supervised by Börje Westerdahl. Financial
support was provided by BeFo/Formas and SBUF. The project will continue in a
commercial phase under the name of Edvirt in cooperation with Encubator AB at
Chalmers University of Technology.

Stockholm in December 2011

Mikael Hellsten

BeFo Report 111

II

SAMMANFATTNING
Sprutbetong används för att förstärka bergstrukturer under konstruktionen av tunnlar,
gruvor och många andra projekt. Betongen slungas i hög hastighet på ytor med hjälp
av tryckluft. För att hjälpa denna process används ofta robotutrustning. Dessa robotar
styrs manuellt av operatörer som är ansvariga för att utföra förstärkningsarbetet enligt
specifika instruktioner och regler. Kvalitetskraven för denna typ av arbete är mycket
höga och operatörerna måste vara välutbildade både i teorin bakom arbetet och i
användandet av utrustningen. I dagsläget utförs den största delen av utbildningen ute
på arbetsplatser. På grund av nya operatörers oerfarenhet leder detta till ökade
kostnader, osäkra arbetsförhållanden och ökad tidsåtgång.

För att minska problemen med helt oerfarna operatörer ute på riktiga platser har detta
projektet gått ut på att utveckla en mjukvara som ett alternativ till praktisk utbildning.
I mjukvaran kan framtida sprutbetongoperatörer virtuellt kan träna på de viktigaste
färdigheterna som krävs för att korrekt styra en sprutbetongrobot. Mjukvaran har
utvecklats i programmeringsspråket C++ och använder sig av realtidsgrafikramverket
OpenGL och består av en simuleringsmotor som kan återskapa arbetsmiljön för en
sprutbetongoperatör samt en grafikmotor som kan visuallisera miljön i 3D på en
vanlig bildskärm eller i sterioskopisk 3D med hjälp av glasögon i aktiv stereo. På
detta sätt kan man med en vanlig dator erbjuda operatörer en inblick i en typisk
arbetsmiljö där man kan styra en robot med realistiska kontroller och få omedelbar
återföring på hur robot och betong beter sig i olika sammanhang.
Simuleringsmjukvaran består av följande komponenter.

Sprutbetongroboten och den tillhörande kontrollen är en av de viktigaste aspekterna i
simuleringsmjukvaran och är en av de punkterna som det jobbats med för att få en så
realistik upplevelse som möjligt. Först och främst så har ett protokoll utvecklats vilket
gör det möjligt att koppla in riktiga robotkontroller till simulatorn. Detta innebär att
robotar i simulatorn kan styras på samma vis precis som de hade styrts i verkligheten.
Robotarna i sig importeras till simulatorn via 3D-modelleringsprogrammet Maya. En
utökining till Maya har skrivits för att konstruera och exportera robotmodeller vilket
även ger utvecklingsmöjligheter i form av att man kan lägga till fler robotmodeller på
ett enkelt sätt i framtiden. Den robotmodellen som finns i den nuvarande mjukvaran är
en testmodell som representerar en riktig robot. Roboten har en leduppsättning som
liknar moderna robotmodeller på dagens marknad och styrs på samma sätt via den
riktiga kontrollen.

En andra viktig punkt för få en bra träningsupplevelse är att miljöerna man jobbar i
återspeglar förutsättningarna som finns i en verklig arbetsmiljö. För att åstadkomma
detta visualiseras arbetsmiljön så realistiskt som möjligt med hjälp av till exempel
ljussättning och skuggor som grafikmotorn hanterar. Den geometriska information om
arbetsiljöer är också viktig då ytans utformning är något en operator måste hålla under
uppsikt för att kunna göra ett bra arbete. För att få så realistisk miljö som möjligt har
det arbetats med att omvandla punktmoln från laserscaningar av riktiga tunnlar till
geometri som kan laddas in av simulatorn.

Den tredje punkten för att kunna träna operatörer är att roboten skall kunna spruta
betong som fäster på ytorna i arbetsmiljön. För att åstadkomma detta så simulerar
mjukvaran ett betongflöde med hjälp av partikelsystem samt beräknar hur mycket av
betongen som fastnar på ytan man siktar på. Hur mycket betong som fastnar bestäms
av vidhäftning. Vidhäftningen av betong påverkas av många parametrar som till
exempel lufttrycket som betongen sprutas med, betongblandningen och hur hårt

BeFo Report 111

III

underlaget man sprutar på är. De två parametrar som påverkar vidhäftningen mest är
avståndet från munstycket till ytan samt att munstycket har en rät vinkel mot ytan.
Hur bra vidhäftning man har avgör hur mycket av materialet som används effektivt
och på grund av detta är avstånd och vinkel en av sakerna som simulatorn fokuserar
på.

För att veta hur bra resultat en operatör har beräknar och sparar simulatorn statistik
över en mängd olika parametrar. Dessa kan operatören se antingen i realtid under
träningspassen eller i efterhand efter avslutad övning. Några av parametrarna som
sparas är betongvolymen operatören har använt. Det sparas även hur mycket av detta
som är effektivt använt och hur mycket som slösats. Operatören kan även se vilket
mönster munstycket har tagit under övningstillfället samt undersöka tjockleken över
hela arbetsytan. Med hjälp av statistiken och de visualiseringsverktyg som finns i
simulatorn kan operatör eller handledare analysera ytor och betongmängder för att
avgöra vad som gick bra och dåligt under övningstillfället.

Simulatorn inkluderar även ett kurssystem i vilket man kan sätta upp övningar som en
operatör skall få godkänt på för att klara kurser. Detta system använder sig av
statistiken som simulatorn samlar in under ett träningspass och analyserar den
automatisk utefter de kriterier som är specifierade för övningen. Operatörer får logga
in i systemet med sina användarnamn och systemet kan sedan hålla reda på övningar
och kurser som olika användare har klarat. Detta skulle kunna utnytjas i sammband
med kurser eller certifieringar i olika sammanhang.

Huvudmålet med mjukvaran är att den ska användas för att ersätta så stor del som
möjligt av den praktiska utbildningen för helt oerfarna operatörer. Förmodligen
kommer inte praktisk träning kunna ersättas helt då det är svårt att få en simulering
såpass verklighetstrogen men kan man till exempel halvera tiden praktisk träning är
det väldigt värdefullt. Förväntningen är att mjukvaran och virtuell träning avsevärt
kommer att reducera kostnaderna för att utbilda operatörer genom att minska tiden
oerfaren personal opererar i riktiga projekt. Detta leder i sin tur leder till mindre
materialspill, mindre korrigeringsarbete, kortare tidsåtgång samt att man kan undvika
säkerhetsrisker associerade med oerfaren personal.

Nyckelord: sprutbetong, simulering, datorgrafik

BeFo Report 111

IV

SUMMARY
Sprayed concrete, or shotcrete, is a method of applying concrete as a reinforcement
agent during construction of tunnels, mines, and many other projects. The concrete is
projected pneumatically onto surfaces at high velocities. To aid this process, robotic
equipment is used. The robots are manually controlled by operators that are
responsible for performing the reinforcement according to regulations and specific
instructions. The quality demands on this type of work are very high and the operators
need to be well educated in controlling the equipment and understanding established
procedures. In the industry today, education is mostly performed on live production
sites. Due to the inexperience of beginners this induces extra costs, decreased safety
and increased production time.

With the goal of alleviating this problem, in this project, a virtual software system for
the education of shotcrete operators has been developed. The software has been
developed in the programming language C++, using the real-time graphics framework
OpenGL.

The software program is capable of simulating the shotcrete experience and allows
users to operate a robot in real time and receive instant visual results. This is
performed by operating an authentic control device which is connected to the
computer, relaying signals to the virtual robot. Concrete flows from the nozzle of the
robot, adhering to the surface. The adhesion itself is dependent on various parameters,
such as distance and angle to the surface. Available to the users are a number of
options for feedback, both during and after a training session. These include real-time
adhesion feedback, visual aids and statistics.

The software is to be used to partially replace real world practical education. This is
expected to significantly reduce the costs for educating operators. Moving the
education to a virtual setting will also greatly decrease, or completely eliminate,
safety concerns during training.

Key words: shotcrete, simulation, computer graphics

BeFo Report 111

V

Contents

1 INTRODUCTION 1

2 BACKGROUND 3

2.1 Problem description 3

2.2 Goal 3

2.3 Previous work 4

2.4 Introduction to Computer Graphics 4

3 IMPLEMENTATION 7

3.1 General Requirements 7

3.2 Robot 7

3.3 Physics 9

3.4 Hardware Interface 9

3.5 Environment 10
3.5.1 Concrete data 10
3.5.2 Structure 12
3.5.3 Concrete application 13
3.5.4 Texturing 15
3.5.5 Creation 15

3.6 Graphics 17
3.6.1 Deferred rendering 17
3.6.2 Lighting 18
3.6.3 Shadows 19
3.6.4 Particle Systems 22
3.6.5 Stereoscopic rendering 22

3.7 User Tests 23

4 RESULT 25

4.1 Environment 25

4.2 Robot 25

4.3 Controls 26

4.4 Concrete and Adhesion 26

4.5 Statistics 26
4.5.1 Concrete Depth Visualization 26
4.5.2 Concrete Usage 27
4.5.3 Adhesion 27
4.5.4 Path of operation 27

BeFo Report 111

VI

4.6 Assignments 28

4.7 Usability 28

4.8 Hardware and Software Requirements 30

5 FUTURE WORK 31

5.1 Robots and Controls 31

5.2 Environments 31

5.3 Concrete parameters 31

5.4 Education and User interface 32

6 CONCLUSION 33

7 WORKS CITED 35

BeFo Report 111

1

1 Introduction
This project have been carried out at the Department of Structural Engineering,
Construction Management, Visualization Technology with the support of Mikael
Johansson, Mattias Roupé and Börje Westerdahl.

Tommy Ellison works with shotcrete at BESAB in Göteborg and is the person that
came up with the idea and initiated this projekt. Tommy and BESAB have provided
valuable industry experience to the projekt.

Ulf Assarsson at the Department of Computer Science and Engineering acted as
advisor on computer graphics issues during the development of the software.

In the beginning of the project a number of industry professionals from different
Swedish companies were invited to partake in a reference group to provide input and
feedback during development. Meetings with this group were held a few times each
year and the feedback from these meetings helped the project a lot The following
people were invited to partake in the meetings:

-Martin Bergström - Tyréns
 Regional chief, west

-Lars O. Ericsson, Chalmers University of Technology
 Associate professor at the division of Geology and Geotechnics

-Henrik Eriksson - BESAB
 Experienced operator of shotcrete robots.

-Quanhong Feng - 3D MultiInfo 3D Laser Scan Solution AB
 Works with laser scanning of tunnels and other construction sites.

-Mikael Hellsten - BeFo
 Research director at BeFo

-Per-Erik Josephson, Chalmers University of Technology
 Professor at the division of Construction Management.

-Benjamin Krutrök - LKAB
 Chief of produktion of shotcrete and concrete at KGS AB.

-Robert Sturk - Skanska
 Technical chief.

-Gunilla Teofilusson - CBI Betonginstitutet
 Works with education in the use of concrete in different areas.

-Per Vedin - Trafikverket
 Rock technician at Trafikverket

-Kjell Windelhed - Trafikverket
 Rock technician at Trafikverket

BeFo Report 111

2

BeFo Report 111

3

2 Background
2.1 Problem description
In the construction and mining industry, an important aspect of the work is the ability
to rapidly and effectively strengthen existing rock surfaces and structural elements
using a reinforcing material. Typically, the material which is used for this is concrete.
The primary method for applying this concrete is to pneumatically project it onto a
surface at high velocity. The concrete flows in a hose and out through a nozzle at the
end. This is called sprayed concrete reinforcement, shotcrete reinforcement, or simply
shotcrete.

Shotcrete reinforcement is most often performed with the help of a robot and is used
during construction and repairs of tunnels, mines, rock shelters, and many other
scenarios. The robots are manually controlled via remote by operators that are
responsible for performing the reinforcement according to regulations and specific
instructions, such as concrete thickness. Also, to achieve sufficiently good results, the
nozzle must be kept at an optimal distance from the surface, in the correct angle. This
is not an easy task as the working surface is often uneven and fragmented, for
example in the case of blasted rock in mines or railway tunnels.
Today in Sweden, there are no educations for shotcrete robot operators supported by
the government. All education on the practical aspects of shotcreting is therefore
performed internally at companies that do this kind of work. The mining industry is
experiencing a growing market and there are extensive plans for new infrastructure
projects. This is one reason to believe that demand for shotcrete robot operators will
increase in the coming years.

To learn how to operate a shotcrete robot correctly, practical training is essential.
Today, this is mostly performed at a live production site with supervision from an
experienced operator. This quickly becomes very expensive both due to material
waste as well as corrections needed where the necessary quality requirements are not
met. Another option available is to put students in a dedicated practice environment.
This option has the benefit of not having projects suffer from any mistakes made
during training. The downside is that costs are still high as material, equipment and
preparation of the environment is expensive.

It takes a lot of practice with a robot before an operator can be considered fully
educated. This leads to high costs for the companies and there are no particularly
effective training methods available. An alternate method which lowers costs is
needed. At BESAB, the idea was born to educate nozzlemen in a virtual environment.
This would likely greatly reduce costs by reducing faults, improve safety, decrease
installation times, and be a good supplement to practical training.

2.2 Goal
The goal with this project has been to develop a computer simulation that can be used
to educate shotcrete operators in a virtual environment. To accomplish this, a
computer program has been developed where operators can perform shotcrete
reinforcement in a virtual environment, in real time. The aim has been to produce a
realistic simulation where the operator can learn to maneuver a shotcrete robot, learn
the procedures of concrete application and review different quality aspects of the
result. This includes statistics such as surface coverage, concrete thickness and

BeFo Report 111

4

material consumption. The idea is that such a simulator can replace part of the
practical training and in this way avoid many of the expensive mistakes new operators
do at real work sites.

2.3 Previous work
In 2007, a pre-study was compiled at Chalmers Visualization Technology (B.
Westerdahl, 2007). This report showed that it's a reasonable goal to try and produce a
virtual training system. By 2009, further development was done as a master's thesis
project (P. Börjesson, 2009) at Chalmers. During this project a prototype was
developed which includes virtual tunnel environments, real time concrete updates and
robot control. The prototype produced here showed that it would definitely be
possible to produce a training simulator for shotcrete robot operators.

2.4 Introduction to Computer Graphics
The following chapters can at times become quite technical in nature and much of it
revolves around the domain of real-time computer graphics. It is understandable if the
concepts can seem far from trivial, and it is the hope of the authors that most people
should still be able to follow along. Therefore, this section contains a (very) brief
introduction to the topic, along with several terms that is used throughout the rest of
the document.

Digital images are constructed of a two-dimensional grid of colored points, or pixels.
Each pixel consist of a triplet with three colors; red, green and blue. Each of the three
colors is specified with a value ranging from 0 to 255. This means that each pixel is
capable of representing about 16.7 million (256^3) different color values.

The most common way of modeling 3D geometry is to use polygons. Due to its
simplicity, the most commonly used polygon is the triangle. A triangle consists of
three points in space, or vertices, which is the least number of points required to
represent a surface in three dimensions. Combining triangles, we can approximate
very advanced shapes and this is the way most real-time computer graphics handle
geometry. A collection of triangles that represent an object is often called a mesh.

 Figure 1: Left, a triangle in 3D space. Right, a 3D mesh built of triangles.
Cameras in 3D function much like its real world counter-parts. It is set up with
position, direction, rotation and other properties, such as field of view. Through a
process called rasterization, the objects seen by the camera are projected onto pixels
on the screen. The process of displaying a 3D scene on a screen is called rendering the
scene.

BeFo Report 111

5

A texture is a color image that can be applied to a mesh in order to give it color and
structure. For example, you might apply a texture depicting bricks to a flat mesh to
give it the look and feel of a solid wall. Other than color data, a texture can also be use
to convey different kinds of information, such as height or depth.

 Figure 2: A brick texture applied to a mesh surface.
Lights (and shadows) can be added to enhance the quality of the rendered image.
Lights alter the shading of objects. In computer graphics, as well as in classical
illustrations, shading refers to the effect of applying different levels of darkness to
different parts of an object, relative to its position to the light. In computer graphics,
the nature of the interaction between the object and the light is also considered when
applying this term. Lighting is dependent on the so called surface normal. A normal
describes the direction of the surface relative to the light source. Normals are most
often specified per vertex.

Nowadays, the rendering capabilities of a computer are enhanced by specialized
hardware, graphics cards. Such a card is equipped with a so called Graphics
Processing Unit (GPU) that does all the calculation legwork. Computers are also
equipped with a Central Processing Unit (CPU), which takes care of non graphics
related calculations.

BeFo Report 111

6

BeFo Report 111

7

3 Implementation
This section describes the implementation details of the simulation software. The
different parts of the program are detailed along with considerations and requirements
concerning them. The software has not yet a name, but for the sake of brevity, in this
and following chapters, the abbreviation SOE (Shotcrete Operator Educator) will be
used.

At the start, a rough requirements specification was written, and the major parts of the
software were laid out. The requirements for the software were jointly established by
the software development team and representatives from the industry. Succinctly, the
plan consisted of splitting the project into a number of separable pieces, each
responsible for a specific task. This separation of concerns is not only a fundamental
theory of practice in computer science, but it also allowed the development team to
work on different parts in parallel. All parts of the system were developed iteratively,
and evolved throughout the project.

3.1 General Requirements
On the technical side, a number of requirements were established early on. Not
pertaining to any particular section of the program, these were constraints that were
determined to be important in all aspects of the program.

SOE has, of course, always intended to be a real-time simulation. This means that
there must be some constraints on minimum frame rate allowed. It was decided that
this limit be set to 60 Hz, or 60 updates per second. At this frame rate, the brain can
no longer distinguish between individual frames of images and the result is a smooth
viewing experience. In turn, this means that each frame can, at maximum, take 16.6
milliseconds to compute.

The domain requirements for the software were not set in stone, and in fact still aren’t,
at the beginning of the project. Should a change in these requirements occur, it was
therefore very important that changes to the design be implemented smoothly. This
meant that the code needed to be extensible and modular.

3.2 Robot
The prototype featured a functional, although aesthetically displeasing, robot model.
While technically correct, this robot model was on par with older robot models and
not similar to the modern equipment that is in use today. Therefore, it was decided
that a new model would be needed, replicating the functionality that is found in
modern robotic equipment. At the same time, a system to more easily create and
import robots to the simulator was developed.

BeFo Report 111

8

 Figure 3: Evolution of the robot model used in the project.
The data needed to specify a complete robot model consists of a few pieces that need
to be specified at creation time:

3D mesh and Texture Data
Detail information that defines how the robot looks once in the simulator.

Physics Collision Data
The graphical and physical representation of the robot is separated in order to make
data processing more efficient, as seen by the engine. The collision hull consists of a
number of low-detail convex shapes.

Joint Connections
The robot arm consists of a number of pieces connected by joints. Each joint can
either be rotational or translational and fixed with certain constraints.

Lights
A robot usually has a number of spotlights on its hull.

Nozzle
The position and direction from which the concrete flows.

 Figure 4: Construction of the robot inside Maya.
The team used a program called Autodesk Maya (Autodesk) to construct and
assemble robot models. Out of the box, Maya is a 3D modelling and animation
solutions that is widely used in the games and movie industries. Alongside of 3D
mesh authoring, it is also capable of loading custom plug-in modules. This capability
has been exploited and a custom “robot authoring” plug-in for Maya has been written.
This plug-in has allowed the team to specify all the necessary pieces (as seen above)

BeFo Report 111

9

in a single environment. This information is exported to a binary file which is loaded
by the simulator program.

3.3 Physics
It was decided that a third party solution should be used for the physical simulation of
the robot and its parts. Given the lack of expertise in this area and that there are a
number of highly regarded physics libraries available this seemed like a wise choice.
It was decided that an open source solution would be the best fit and that the Bullet
Physics library (Bullet Physics) would be used. The Bullet library is a mature, widely
used project with performance benefits over its competitors. Essentially, such a library
takes the physical representation of the robot (that is, the physics collision data, as
explained above) and calculates motions of entities as accurately as possible.

At first go, the SOE robot was assembled using Bullet constraint modifiers. These
allow rigid bodies to be jointed together and move relative to each other. A shotcrete
robot is fundamentally a series of connected parts operating co-operatively. It was
discovered that this connectivity posed significant problems for the physics library
which struggled to maintain stability of the system. This instability manifests itself as
wild jumps and jitters instead of a smooth continuous motions.

The instability itself has its cause in how the computer performs the physics
simulations. Rather than exact knowledge, real-time simulations operate on
predictions of motion; given an object’s speed, and mass (and other properties) and
given some time in the future, it can be calculated where it should be at that time.
There are several numerical integrator solutions that can be used for this, with the
better ones resulting in smaller magnitudes of error. A more accurate integrator or
running enough iterations to produces a stable result induces a heavier load on the
computer, so a sufficient middle ground must be taken. Nonetheless, at some rate
errors will inevitably creep in to the results, causing instability.

In a sense, a series of connected entities will propagate errors the longer the chain is.
The errors will accumulate to a point where the simulation is so unstable that the
results are no longer usable. Therefore, the constraint modifier system was foregone
in favor of a more direct approach. Instead of using Bullet’s dynamic physics
simulation to control the joints, a simpler and more stable solution is now used. This
works by letting all joints connect to each other at a static point. Instead of forces
being applied in the physics system each joint has an individual force applied to its
center of rotation or translation. Each transform is then propagated along the chain of
joints, producing a good result of how a robot behaves in reality.

It should be noted that the above described physics simulation has very little to do
with the concrete flow and adhesion. These systems are handled separately in a
different part of the program.

3.4 Hardware Interface
To be able to control robots in the simulation, some way of connecting the remote
control to a PC was needed. KranCom (KranCom), a company based in Göteborg,
specializes in this kind of equipment, and they were able to modify an authentic robot
control device for our purposes. The physical interface used between robots and
control devices has been re-interpreted to connect to a PC environment instead of a
robot. Via radio, the device transmits signals about button presses and joysticks
movements to a receiver. The receiver is connected to the computer via a serial

BeFo Report 111

10

interface. These serial signals are interpreted by the SOE and results in actions by the
robot.

 Figure 5: Example of a control used by shotcrete operators.
It was a fairly straightforward procedure to map the signals from the device to events
accepted by our software. The receiver sends a constant stream of bytes and these
bytes must be interpreted as button presses. Some trial and error testing was necessary
to determine which signals corresponded to which buttons.

 Figure 6: Connection scheme for the equipment.
This software bridge has naturally been written with extensibility in mind and the
proprietary control device currently in use can be replaced for another with minimal
work. This feature is important in order to support new kinds of hardware, both in
terms of robots and control devices.

3.5 Environment
This section will describe how the environments were created, how they are saved and
loaded and finally how they are rendered.

3.5.1 Concrete data
Arguably, one of the most important parts of the SOE is the interaction between the
concrete and the surface to which it is applied. Technically, this poses some
interesting questions and introduces a number of requirements. The concrete needs to
interact with the environment by filling cavities, creating extrusions and smoothing
the surface. It also needs to be rendered convincingly. Also, making assumptions is
difficult because the user can potentially shoot concrete at any point in the
environment at any given time. A number of techniques have been considered and
tested.

BeFo Report 111

11

3.5.1.1 Parallax Mapping
Parallax mapping (N. Tatarchuk, 2006) is a texture based technique that was tried
during very early versions of SOE to see if it would be useful for visualization of both
rock and concrete surfaces. The interesting thing about the method is that it allows for
the rendering of increased detail (such as small holes, extrusions and the like) without
actually increasing the complexity of geometry. This technique works by using a
height map texture applied to the surface and, for each rendered pixel, a ray trace is
performed against this height map. During the trace, texture coordinates are offset
until the ray hits the surfaces of the height map and this creates the illusion of depth in
an inherently flat surface. Parallax mapping works very well for creating more visual
detail without increasing geometric complexity and it's easy to scale the resolution of
detail by increasing or decreasing the height map resolution. Unfortunately it suffers
from a few drawbacks.

For the purpose of this project, each geometric surface needed to be mapped uniquely
to a corresponding height map texture. This is because concrete data can be applied
(uniquely) to any part of the environment. Due to hardware limitations and texture
mapping issues, one texture that covers the entire environment was not deemed
feasible, so this was split up into several height maps that each covers a part of the
environment. This caused a spike in memory requirements, especially considering the
high resolution textures that were needed.

Splitting the height map into many parts also has its share of problems. This technique
does not cope well when close to the edges of the height map as the traced ray might
sample from outside the texture. This is not a problem for a tileable texture, but this
was a luxury that could not be had. To alleviate this problem the best solution in this
case was to use mirrored texture sampling although it does not eliminate the problem
entirely.

By including lighting information, shadows can be achieved this way as well. For
each light, each pixel traces a ray to the light source and checks if it intersects the
height map or not. High quality shadows can be produced this way but this would
require a huge amount of texture samples, making the program extremely fill-rate
intensive, especially for multiple light sources.

One last problem with this technique is the most decisive one. Since it only operates
in texture space, the viewing angles to the surface are of great importance. With a
perpendicular view angle, hardly any artifacts can be noticed. However, when the
angle to the surface becomes too steep, the depth perspective disappears entirely in
favor of ugly aliasing issues. The concrete needs to be able to build up on the surface,
to potentially large heights, and still look good. But, alas, this cannot be achieved with
this technique.

3.5.1.2 Vertex Displacement
The above problems can be averted by opting to do direct vertex displacement.
Instead of using texture tricks, the geometry itself is modified. By saving and updating
the concrete value per vertex and directly modifying each vertex position the
geometry can be shaped in any form. The drawbacks of this technique are for one that
the geometric complexity needs to be fairly high to produce good results. Also, since
the CPU does the legwork of updating the mesh, synchronization with the GPU is
necessary whenever vertices are modified. To keep within acceptable frame rates,
there is also the need to carefully way the amount of vertices that are affected. Still,

BeFo Report 111

12

these are drawbacks that can be worked around and this method is in use in the
current version of SOE.

3.5.1.3 Displacement Mapping
Another texture based technique that was looked at is displacement mapping. This
works similarly to parallax mapping in the sense that it uses height map textures to
store the concrete data but instead of tracing a ray per pixel it displaces the vertex in
the vertex shader. Since the vertex geometry itself is altered, this means that this
technique helps to avoid the most sincere problem with parallax mapping. Although it
requires a mesh with a significantly higher vertex count, tests showed that this was not
a big concern.

A problem with this technique is that the vertex displacement direction must be
specified beforehand. Most often the displacement is done along the normal or some
pre-specified axis. Concrete application cannot be easily predicted, since a user can
spray concrete where- and however she likes. This poses a considerable problem for
this method.

It was later discovered that this problem can be overcome by introducing a second
texture that stores displacement directions instead of raw height values. This texture
would look and behave similarly to a normal map and be used to push vertices in
dynamic directions. The benefit of this is that the geometry itself is never altered in
any way. This would allow the program to access the unaltered environment data (that
is, before any concrete was applied), something that would potentially be of use for
statistical and inspection purposes.

3.5.2 Structure
After the concrete and environment rendering method was chosen a data structure was
create the be able to support this. Environment meshes in SOE is constructed out of
segments and there are a two reasons for this, concrete application efficiency and
rendering efficiency. The bounding volume of a mesh is split into a 3D grid of boxes
and each box that contains geometry is called a segment, together the segments make
up an environment. Splitting up the geometry like this makes both rendering and
updating the geometry a bit more complex but it also provides performance benefits
which are needed to keep the simulation running at real time frame rates.

 Figure 7: Visualization of environment segmentation.

BeFo Report 111

13

When both rendering and updates are performed they start by selecting which
segments are affected by the current operation. This is done by doing collision tests
against the segment bounding boxes when updating and doing view frustum culling
against the bounding boxes when rendering. During rendering this applies both for
rendering the operator perspective as well as rendering of shadow maps for lights.
Because of this, the amount of geometry that needs to be processed during these
operations is minimized and a lot of performance is saved.

A segment contains a number of different data collections:

1. The indices of all vertices in the mesh that fall within the bounding box of the
segment. This data is used when a segment is updated with concrete. During updates,
the software first find which segments that were possibly affected by the sprayed
concrete. After that each segment is responsible for updating the vertices assigned to
it and uploads the new data to the graphics card. It is not possible for a vertex to reside
within more than one segment’s bounding box, which means that each segment has a
unique set of vertex indices. This ensures that during updates, every vertex is
processed exactly once.

2. A set of triangles that lies within the bounding box of the segment. As a triangle is
created out of 3 vertices, it is possible that it crosses the border of a segment and so is
contained in more than one segment. In this case the triangle is arbitrarily assigned to
one of the segments. This triangle data is used to draw each segment during rendering.
The unique assignment of triangles ensures that each triangle in the original mesh is
rendered a maximum of one time each frame. Besides the first set there is also the
possibility to save another extra 2 sets of triangles to render the segment at different
levels of detail.

3. A set of triangles that has the possibility to affect the normals and tangents of any
vertex assigned to the segment. This extra triangle data is needed during updates when
each vertex assigned to the segment updates its normal and tangent after movement
incurred by application of concrete. A vertex normal (and tangent) is dependent on all
triangles that use it and as a vertex might be used in a triangle that is drawn by a
different segment, the triangle set from 2 is not enough. This ensures that all vertices
will always have the correct normal and tangent.

3.5.3 Concrete application
Concrete updates are performed in discrete increments and an increment consists of
several steps. First, a ray is cast into the environment to check for intersections of
surfaces that accept concrete. The intersection test is resolved firstly through a broad
phase checking bounding boxes of segments. If a hit is found here, a narrow phase
looks closely at the particular segment and determines if and where an exact triangle
collision occurred.

When an exact hit has been found, the system looks up all the vertices that could be
affected in a certain radius around the hit point. This radius corresponds to the radius
of the concrete ray. Concrete adhesion calculations are then performed on each
affected vertex. The adhesion calculations return a percentage value from 0 to 100%,
where the latter obviously correspond to complete adhesion. Using other data, such as
the angle of incoming concrete and the distance to the surface, the exact translation of
the vertex is calculated. This calculation is weighted with the adhesion ratio and the
3D mesh is updated. In a linear fashion, the adhesion ratio is also used to determine
the amount of rebound.

BeFo Report 111

14

 Figure 8: Example of which points are selected for concrete adhesion and how
 the grid of points on an actual surface might look like.
The adhesion calculation model currently in use is based on (Melbye, 1994), pictured
below, and currently takes into account what has been found to be the most influential
parameters. The software can be altered to consider additional parameters and the
adhesion model can easily be expanded to calculate the results differently.

 Figure 9: Rebound behavior of shotcrete.
The exact equation that is in use is an approximation of the above diagram and
considers distance and angle to the surface. The first part concerns the distance, and is
calculated as

𝑓 = – (𝑑− 𝑜)𝐶 + 1
where d is the distance from the surface, o is the optimal distance, C is an even
constant controlling the shape of the curve. Taking angle considerations into account,
the actual adhesion can be found by

𝑎 = 𝑓 ∗ (𝑁 ∙ −𝐼)

BeFo Report 111

15

where N is the normal of the surface and I is the incident direction. Here, a is defined
in the interval [0,1]. This formula represents a reasonable approximation of real world
conditions. Presently, it does not take into account surface parameters (such as the
type of rock) or accelerator dosage, but can be altered easily.

SOE performs concrete updates at a fixed time interval. This value can be easily
adjusted and is currently set at 50 milliseconds, which translates to 20 updates every
second. The faster the update interval is the more smooth the application of shotcrete
will look but it also means the computer has to do more calculations. A tradeoff is
made here where one have to balance the smoothness of the updates against the
performance cost of the updates as to keep the target frame rate.

3.5.4 Texturing
The concrete application process causes the environment mesh to change. This is fine
by itself, but can cause issues for texturing. Texturing meshes requires texture
coordinates, which are pieces of information about how a texture is applied to the
mesh. When altering the mesh, especially a great amount (such as creating a large
stalactite) the texture coordinates become corrupt. This will manifest itself as
stretching the texture which looks far from desirable. Even creating static texture
coordinates can be a very difficult task, depending on the complexity of the geometry.
Clearly an alternative solution was needed.

These problems are solved by performing so called tri-planar texturing in the
fragment shader. This is done by projecting texture coordinates along the X-, Y- and
Z-axis and picking the projection that fits best, i.e. the projection axis that is closest to
being perpendicular with the triangle surface. When the triangle surface lies on the
border between projections a blend is performed between the differing mappings. This
system allows for texturing that is always smooth and no effort has to go into
generating and updating UV-sets for the geometry. The downside is that a great many
texture samples are needed, and hence has performance penalties, but this was
decided to be acceptable.

3.5.5 Creation
The features in the simulation and the design of the environment structure put some
restriction on the meshes that represent the environment. For example the mesh need
to have an even distribution of vertices over the surface area as well as a sufficient
resolution of vertices to be able to model the concrete behavior correctly. There are
many possible ways to create a mesh that fulfill these requirements.

3.5.5.1 Modeling
One approach is to simply create the desired environment in a modeling program such
as Maya or Mudbox. The amount of detail that a simple blasted rock surface requires
to appear realistic can be very difficult to create. Creating this amount of detail is both
hard and time consuming as well as beyond the modeling skills of any person
currently working on the project. Even so, attempts have been made to model this
type of environments. Also, modeling tools have been used to enhance or repair an
already existing model.

3.5.5.2 Procedural generation
The options of procedurally generating (D. S. Ebert) surface detail on simple meshes
can be used to decrease time and modeling skill requirements. Options were explored
to create environment meshes from scratch as well as to enhance existing ones using

BeFo Report 111

16

this technique. Procedural generation is quite common in many areas of computer
graphics and it is a method of creating geometry or textures from mathematical
formulas.

It was found that generating entire environments from scratch is far from trivial
realistic results are of the essence. Instead, creating a rough model by hand in a
modeling program that has the general shape of the desired environment is a
comparatively easy task. Surface detail can then be generated procedurally with the
basic mesh as an outline. This method creates a lot better results and has been
integrated successfully into the production pipeline.

3.5.5.3 Point cloud data
Point Clouds is a data format where an object or environment is modeled by a large
set of points each with a 3D position. These clouds can approximate any object and
the more points you have the better the representation becomes. Point Clouds are
acquired by scanning an object or environment in reality with a laser scanner. The
scanner does this by sending out rays of light which are reflected when they hit an
object. The reflected light is measured by the scanner and it creates a point on the
position where the light hit the object. Later, a computer can use the point cloud to
recreate a model of the scanned object.

 Figure 10: Example of a mesh generated from a point cloud.
This process is quite common today and it is common for construction companies to
carry out laser scans of tunnel projects. SOE can obviously benefit from this process
and point cloud data models have been acquired with the help of Quanhong Feng at
ÅF Infrastructure.

The main problem with this method is to find a suitable algorithm for the
reconstruction of the point data into a triangulated model that is usable by the
simulation software. This is a fairly well researched area and there are many
algorithms that can create triangulated geometry from point clouds. The problem is
that not many of the algorithms that have been looked at produce an output that is
directly usable by SOE. This is mostly because the need for a watertight mesh as well
as a regular distribution of vertices in the resulting mesh. Many algorithms are instead
focused on reproducing the geometric object with as few triangles as possible. To
automate as much as possible in the environment creation process software has been
created that can do most of the work with converting triangle meshes to the
appropriate format for the simulation. The process still require some manual
intervention at times where reconstruction did not produce the desired result.

BeFo Report 111

17

3.5.5.4 Environment Mesh Processing
To handle the all the data associated with the environments a few utility programs
were created to process the data into the right format as to be usable by SOE.

Maya Plugin
In the case of environments Maya is used in two ways. The first is to import models
generated from point clouds and repairing areas of the model that might not have been
correctly created during the conversion from point cloud to triangle mesh. The second
case is to model a basic environment shape that can be used in the procedural
generation in the processing software. When the models are finished a custom plugin
extracts the data and exports it to a text based file format. Currently the plugin exports
vertices, indices, tangents, and texture coordinates.

Processing software
The environment processing software is a tool written for this project to automate
some of the work needed to take a generic mesh and make it ready for use in SOE.
The tool takes a raw triangulated mesh as input and produces an output file in the
form that the SOE expects. That is, chopped up into segments, and tessellated into a
specified resolution. It also has the option of running a procedural displacement
algorithm on the model, generating detail variations.

3.6 Graphics
A lot of focus has been put on the graphics of the simulation as this is one of the most
important parts to provide the operators with a realistic experience. At the start of the
project the software was a very simple prototype that had been developed during the
master thesis work. The prototype was based on a rendering and scene hierarchy
library called Open Scene Graph, or OSG for short. During the development of the
prototype a number of problems both with OSG and the techniques used had been
discovered that were considered serious drawback in a continued development of the
simulator. At the time OSG was based on the 2.0 version of the OpenGL rendering
API. This made it very hard or even impossible to access many of the features
introduced in the modern OpenGL 3.0. Also, the scene graph structure that OSG
inevitably made use of did not fit well with the team’s goals. Instead, a custom
rendering architecture was built directly with OpenGL 3.3 which gave the
development team greater flexibility. Creating a rendering system from scratch can be
a huge undertaking. On the other hand, the target domain for the simulator was
relatively narrow which made this task feasible and successful.

3.6.1 Deferred rendering
When designing the new rendering pipeline for SOE it was decided to base it on a
deferred rendering approach instead of the classic Forward rendering paradigm. This
is a shift that has become common in the games industry in recent years and it
provides a number of benefits as well as some drawbacks.

The major benefit of a deferred approach is that lighting calculations is decoupled
from geometry. This works by rendering the scene in different passes. During the first
pass, the geometry pass, all geometry is rendered as normal but instead of drawing
directly to the back buffer the data is saved in a number of textures. These are
commonly called G-Buffers and the data that is saved here is the color of the unlit

BeFo Report 111

18

geometry, depth, normals and the specular properties of the material. This is all the
data that is needed to calculate the lighting for each pixel in a later pass.

Table 1. Channel usage in the deferred buffers.

In the second pass all lights are drawn on top of the G-Buffers and each light uses the
values in the buffers to calculate their contribution to each pixel. By decoupling the
light rendering from the geometry rendering in this way it greatly lowers the
complexity of shader development as the shaders drawing the geometry does not have
to account for different light setups.

A disadvantage of deferred rendering is that the G-buffers take a lot of memory and a
lot of data need to be transferred each frame. It is also much harder to use hardware
multisampling for anti-aliasing as multi sampled textures were not supported by the
time this was implemented. To solve the problem of aliasing one of the post-process
effects implemented was a AA-technique based on edge detection and blurring based
on the color and depth values in the G-buffers.

3.6.2 Lighting
There are two types of lighting in the simulation, direct and indirect lighting. Direct
lighting comes from spot and point lights and is the types of light that are directly
noticeable by a user. They emit light and produce shadows. A point light is a point
that emits light uniformly around it, in all directions. A spot light focuses the light
through a cone in one direction. These types of lights can either be placed on various
spots in the environment or mounted on the robot. All light sources in SOE use the
same lighting model which is a fairly simple diffuse term plus a specular reflection
term.

Indirect, or ambient lighting, aims to approximate “residual” lighting from the
environment and is an important, but hardly noticeable part of everyday life. The
ambient lighting is just a fixed value applied to the whole color buffer in the lighting
pass. Before ambient lighting is applied a processing pass is performed to calculate
ambient occlusion which affects the strength of the ambient value for each pixel. This
is done with a technique called Screen Space Ambient Occlusion (SSAO) which uses
the depth relation between pixels to approximate how much they are occluded by the
rest of the surrounding scene. Ambient occlusion was implemented fairly late in the
development of the project but is an important part of the perceived feel. It helps to
accentuate small crevices, openings and gaps in the environment which can help the
user tremendously in discerning environment details.

G-Buffer layout

Normal.x Normal.y Normal.z Linear Depth

Color.x Color.y Color.z Future use

Specular Strength Specular Power Future use Future use

BeFo Report 111

19

 Figure 11: Scenes rendered with(right) and without(left) SSAO.
The lighting situation in a typical tunnel environment usually consists of a small
number of very intense lights positioned on and around the robot. This creates a
lighting situation with very large differences between unlit and brightly lit surfaces.
While the human eye has evolved to be able to handle these situations a computer
screen does not have the necessary range to handle this in a pleasing way. To alleviate
this problem, a technique called high dynamic range (HDR) lighting is used. Using
this, the scene is rendered using a higher range of lighting values and through a
process called tone mapping, this high range is mapped to a range that the screen can
present.

3.6.3 Shadows
Another subject closely related to lighting is that of shadows. Shadows are very
important for human perception because without them it becomes hard to identify
spatial relationship between different objects (P. Mamassian, 1998). In SOE, it’s very
important for users to be able to determine the relationship between the nozzle and the
environment.

The shadow algorithm used in SOE is called shadow mapping (Crow, 1977) and is a
well researched technique, that is fairly easy to implement and cheap to compute. The
shadow mapping algorithm uses a square texture to essentially render an image from
the light’s point of view. This works very well for spot lights as they emit light in a
single direction which can be rendered into one texture. In the case of point lights,
since they are essentially spherical, their field of view is infinite and cannot be
accurately represented in a single texture (which would require infinite detail).
Instead, this is usually approximated by using a number of textures (usually six) from

BeFo Report 111

20

different sides. This process is not hard, but it makes it six times more expensive to
calculate the shadow map for a point light than for a spot light. Therefore, point light
shadows are not supported in SOE. In practice this is not a problem because in a
typical shotcrete environment, the light sources you can expect to find are mostly
various forms of spot lights.

 Figure 12: Scene rendered with different effects. From top left to bottom right.
 1. Only ambient lighting. 2. Added directional lighting. 3. Added SSAO. 4.
 Added shadow maps.
The standard shadow mapping solution can (and usually does) make shadows appear
jagged and hard edged. The exact shadow mapping technique that is used is called
Variance Shadow Mapping (W. Donnely). This technique uses a statistical trick to
smooth the edges of the shadow which make them look more realistic.

 Figure 13: Difference between regular shadow maps and variance shadow
 maps.

BeFo Report 111

21

 Figure 14: Construction of a scene in the simulation. From top left to bottom
 right:
 1. Visualization of triangle meshes which are the base of the scene.
 2. Applied textures.
 3. Applied ambient lighting and SSAO.
 4. Applied directional and point lights.
 5. Applied tone mapping.
 6. Applied variance shadow mapping.

BeFo Report 111

22

3.6.4 Particle Systems
Particle systems is a way to model dynamic systems of
particles such as fire, smoke and water in computer
graphics. This method is well suited for use in the simulator
to represent the concrete flow, rebound, mist and dust that
shooting of concrete produce in real life. These effects are
important so the operator can know which direction the
concrete ray is shooting as well as giving a more realistic
environment. The particles in these system does not have
any physical effect in the simulation environment but is just
used to visualize the actions for the operators benefit.

 Figure 15: Visualization of shotcrete ray.

3.6.5 Stereoscopic rendering
Stereoscopic rendering is a technique used to create a
perception of depth on a two dimensional screen. Ordinary
displays can of course show three-dimensional content, but
when the image is projected to a screen with only two
dimensions it still appears quite flat. Stereoscopic rendering
aims to improve this and relies on specialized display
devices and glasses to produce a better appearance of true
3D on two dimensional monitors. Examples of this can be found in abundance these
days in movie theaters where an increasing number of films can be viewed in 3D.

The technique works by taking advantage of the way which the brain processes input
from the eyes. Each eye processes input from two slightly varying viewpoints. These
signals are combined by the brain into one seamless image. The separation of our two
eyes is what makes humans able to perceive depth instead of a flat image. To display
stereoscopic image then, we must render a scene from two slightly different
viewpoints and feed each eye the corresponding image. The brain takes care of
assembling the images and the outcome is a sensation of depth. Some new pieces of
hardware are required to make this work: A high-frequency (“3D ready”) monitor and
a pair of 3D glasses.

A regular screen has an update frequency of about 60 Hz. At this frame rate, the brain
cannot distinguish between individual frames, and the result is a smooth viewing
experience. For stereoscopy, two images need to be displayed in the same amount of
time. Since a normal monitor cannot display two images at once, they are displayed in
turn and so the monitor needs a refresh rate of at least 120 Hz. Simultaneously, the 3D
glasses synchronize with the monitor and feeds each eye the correct image.

 Figure 16: Equipment used for quad buffered stereoscopic 3D.

BeFo Report 111

23

Realism is of high importance in SOE. A higher degree of realism makes the learning
process more accurate and pleasant. When talking to test users, they expressed a
certain lack of depth awareness which made it difficult to accurately determine
distances in the 3D environment. Stereoscopic rendering can help reduce this
problem.

Conceptually, the technical aspect of this new type of rendering was not that difficult;
set up two virtual cameras instead of one, render the scene from both viewpoints, feed
them to the connected 3D-capable screen, and enjoy the experience through the 3D
glasses. This puts some strain on the software side which needs to be able to render
two images instead of one each cycle, but this problem was not the most important
one. In fact, it was hardware limitations that made the process difficult to achieve. As
it turned out, even though the current hardware had all the necessary capabilities, the
necessary functionality in the low level graphics API was not exposed when using a
consumer-grade graphics card, such as the one that was used. To rectify this, a new
type of graphics card was purchased that had all necessary facilities. When these
hurdles had been overcome, it was a fairly straightforward process to have a
stereoscopic version up and running.

Calibration of the three-dimensional effect is of high importance. There are primarily
two variables that affect the user. The first one is the distance between the two virtual
eyes. The second is the focal plane, the point in front of the eyes where their focus
directions meet. These parameters both affect the amount of depth perception as well
as the “tolerance” which the user has towards the effect. Every person is different, and
when the variables are different from what the user’s brain expects and can handle,
tiredness and headaches can occur. It is important that the parameters can be tuned per
user and not be too accented.

3.7 User Tests
User tests are important for any software product and SOE is no exception. On several
occasions users outside of the development group has been invited to test the
simulator. These users have consisted of people from a variety of positions. Arguably
though, the most important group of people for this purpose is experienced shotcrete
operators.

Two senior shotcrete operators from BESAB have on a number of occasions been
invited in to test the product and offer feedback. The feedback these expert users have
provided has ranged a number of topics, from graphical adjustments to movement and
scale of the robot.

Naturally, user testing has provided invaluable feedback to the development team. If
and when the development of the product continues, tests must continue throughout
the development process, to iterate on improvements.

BeFo Report 111

24

BeFo Report 111

25

4 Result
During the course of the project the goal has been to produce the basis for a software
program, usable to educate shotcrete robot operators. At the time of writing of this
report there exists a working version of the software produces during this project that
accomplish this goal. This section will describe the major features of the simulation
software.

4.1 Environment
First of all, the software has the ability to load and visualize environments that a
shotcrete robot operator typically works in. Graphically, the gap between the
simulation and the real world should not be too great. The environments should also
resemble real work environments in size and shape. All this ensures that training in
the simulation software will be beneficial. There are a number of ways in the current
software to create new environments.

Laser Scanning
Laser scanning is arguably the most accurate way of achieving an accurate
representation of a real environment, but it is also the most difficult format to work
with. Often the point cloud data, which is the way the data is represented from the
scanning process, contains large amounts of jitter and imperfections. It can also be
difficult to reconstruct a triangulated mesh from the disjoint points of the cloud.

Manual 3D Modeling
Like any other 3D mesh, it is possible to create an environment by hand in a 3D
modeling program, such as Autodesk Maya. The process is similar to sculpting. An
artist carves, molds and alters the surface to look like a proper tunnel. However, it has
proven very difficult to author environments with surfaces that resemble blasted rock.

Procedural Generation
Procedural generation is the process in which the computer uses mathematical
formulas to create content. This process is used to add detail on either laser scanned or
hand crafted models.

When an environment have been created, the model need to be processed in a certain
way to make it suitable for use by the simulator. To make the creation process as easy
as possible a utility program has been written to process the model before it can be
loaded into the simulator itself.

4.2 Robot
The simulation software has the ability to load different robots into the virtual
environment. The robot currently in use in the simulator is based on the functionality
of the Meyco Potenza. Reference photos were used to help the team build a 3D model
of the robot. This new robot model has several advantages over the older one from
previous versions of the simulator. It has improved mobility in terms of number of
joints and axis of operation as well as improved visual appearance. It also conforms
well to what operators can expect to work with in the future. While not an exact visual
replica of its real world counter-part, it has the same movement options and joint
configuration.

BeFo Report 111

26

The choice of the robot model carries no bias towards any particular brand but was a
result of ease of access to reference photos. Both the architecture of the program and
the constructed tools have been designed in such a way that adding new robot models,
that differ both in terms of aesthetics and functionality, is a smooth process.

4.3 Controls
A simulator of this sort would not be complete without the proper means of
controlling the robot. This requirement has been satisfied, and a control device has
been acquired and integrated with the simulation environment. The control device
itself is an authentic, remote control device of the type that is used in the industry.

The software facilities that have been developed to enable the use of this hardware
interface is extensible and can be adapted easily to fit other control devices so that
another control device from a different manufacturer can be included.

4.4 Concrete and Adhesion
One of the core aspects of SOE is the ability to actually shoot concrete in the virtual
environment. The concrete spraying is accomplished by simulating a flow of concrete
from the nozzle of the robot. When the concrete hits the environment an adhesion
calculation determines how much of the concrete that sticks to the surface. With this
information, the surface geometry can be recalculated. The simulation saves all data
associated with the shotcrete spraying for later display. This enables operators to both
experience how concrete behaves as well as inspect the result of their work in the
simulation.

4.5 Statistics
As it is a simulated virtual environment that is being created, it is possible to not only
visualize a real world scenario, but also enhance it in different ways. Depending on
the needs of the operator (or the supervisor), different metrics of information can be
displayed to aid the learning process. SOE currently records a variety of different
metrics.

4.5.1 Concrete Depth Visualization
In the real world, thickness is measured by painstakingly taking manual surface
samples on regular intervals, a time consuming and potentially inaccurate task. The
virtual world, on the other hand, can make this easier. At each point of the surface, the
amount of concrete is recorded. This information can be utilized to display the
thickness of concrete. The values are reinterpreted as a color gradient. Blue colors
signify low amounts (or no) concrete. The color shifts to green when the thickness is
at or close to the optimal thickness (A setting which can be altered easily). Red hues
signify a too thick layer of concrete.

BeFo Report 111

27

 Figure 17: Visualization of concrete depth.

4.5.2 Concrete Usage
Another important metric is to measure the amount of used concrete. The system
records information about the total volume as well as the percentage of which actually
sticks on the surface. Given these two pieces of information, the waste percentage is
calculated. Waste minimization is obviously an essential part of the education process.

4.5.3 Adhesion
The operator maneuvers the machine, positioning the spray nozzle relative to the
surface. While doing so, the potential adhesion is calculated. At any time, even
before any concrete has been used, the operator can see the effect the current
positioning of the nozzle would have on adhesion. During training this data is
potentially the most valuable piece of information available to an operator.

4.5.4 Path of operation
In order to achieve optimum conditions, the path followed while spraying plays an
important role. Ideally, the nozzle should follow a path back and forth on the surface,
gradually rising towards the ceiling. Failing to meet this condition can result in
increased waste. This information is also recorded in the SOE and can be displayed as
a string of thread, showing how the nozzle moved during the assignment.

It should be noted that any or all of the tools described above can at any time be
turned either on or off, depending on the conditions of the current training session. A
beginner will likely make use of each of these tools to great extent. An experienced
operator, in the other hand, might only sparingly use them to verify the result.

Currently, the exact requirements and needs for the statistics and other feedback
during the simulation have not been decided. This area is currently being discussed
with experience operators and personnel to get a better view of what is useful and
required by the software.

BeFo Report 111

28

 Figure 18: Visualization of path tracking.

4.6 Assignments
To be able to use the simulator in educational programs the system now also supports
the creation of assignments. An assignment can specify requirements that the current
student need to fulfill and works much like an exam of sorts. These requirements are
continuously evaluated during an assignment session and the system can record the
result. Requirements can use all of the statistics from the simulation in its evaluation.
It could for example specify that the minimum concrete thickness has to be within a
certain threshold or that the wasted concrete can't rise above some fixed percent of the
total amount used.

Assignments are started from the main menu of the program. A student can choose
from a number of assignments (perhaps included in a course). When an assignment
has been chosen, the program loads the necessary information and evaluates the
assignment in real time, while the operator performs the necessary steps. For example,
an assignment can look like this:

Requirement:
- Achieve an adhesion ratio of at least 0.7

Ending Condition:
-Amount of concrete used is 10m3

 This program loads the assignment and the student begins. When 10m3 of concrete
has been used, the program notifies the user that the assignment is finished. If the
adhesion ratio (waste / usage) is higher or equals to 0.7, the assignment is passed.
Otherwise it is failed.

4.7 Usability
The virtual SOE camera operates from a first-person perspective. That is, the scene is
rendered as if looking through the eyes of a virtual person. We call the virtual
embodiment of the user the avatar. Similarly to the real world, the avatar can walk

BeFo Report 111

29

around the virtual scene and look in different directions. The control device used to
operate the robot can be used just like it would in a real scenario as it has a direct
connection to the virtual robot. The avatar, on the other, hand is more difficult to
control. There is no natural way to map the movement of the operator’s body to the
movement of the avatar. This means that some other mean of controlling the avatar
have to be implemented and it has to be easy enough not to hamper the learning
experience.

In games, a common solution to this problem is to let the user control the avatar’s
movement using the keyboard and mouse. Forward, backwards and sideways motions
are typically mapped to four buttons on the keyboard and the mouse is used to look
around the environment. This control mapping was also the first that was
implemented into SOE. As a relatively simple solution, it has the benefit of being
widely used and accepted by people familiar with games. However, we cannot assume
that the key demographic of SOE are particularly familiar with games or even
computers in general. User tests with this solution have shown that this is indeed the
case, and the test users were often unwilling to use this control scheme at all.

A partial solution to this issue was to remove the necessity of looking around using
the mouse, and only let the user worry about walking. This was achieved by
implementing a camera tracking system that automatically targets the interesting parts
of the shotcrete process. The interesting part, in this case, is defined to be the nozzle
and the concrete’s hit position in the environment. As far as possible, the camera in
this mode tries to automatically make sure that both the nozzle and the hit point is in
frame. This control mechanism functions relatively well and users have been slightly
more inclined to move around with this in place.

 Figure 19: Automatic camera tracking keeps the nozzle(red) and hit
 point(pink)in view if possible .
Another mode of movement is to have fixed locations and viewing directions for the
avatar. This will eliminate the problem of having the user move manually, but it will
also impose severe restrictions. This method has been considered as a viable
alternative but it has not yet been implemented. If an implementation was to take
place, rigorous testing must be undertaken to determine suitable spots and viewing

BeFo Report 111

30

angles which work under all circumstances. It might also increase the workload when
constructing new environments if they require specific points the operator can act
from as these will probably have to be created manually.

A third solution is a “swap mode” for the robot control. In this case the user can swap
between controlling the avatar and the robot with some button on the control device.
Having eliminated the need for keyboard and mouse would be an improvement. This
scheme would on the other hand require some getting used to. While implemented,
user tests have not been performed using this technique.

A solution suggested to us was to let the avatar be controlled in a similar way to that
of popular mapping tools (such as Google Maps or Eniro Kartor). The user would
then use the mouse to drag the camera, and click on points on the ground to move.
This scheme has been implemented but it needs to be evaluated in user tests.

4.8 Hardware and Software Requirements
The SOE is built using modern computational and graphical approaches. As such, the
hardware requirements of the program are relatively high, comparable to modern high
end games. Mostly, the computational work load is put on the graphics side, meaning
that above all, the computer that run it needs to be equipped with a powerful enough
graphics card. CPU power is also important, but not to such high regard. The
machines that have been used to develop SOE have had the following hardware
characteristics.

Processor: Intel Core 2 Quad, running at 2.66 GHz
Graphics: NVIDIA GeForce GTX 275, 2668 MiB memory, 660 MHz
Memory: 4096 MiB
Hard Drive: 1 TB, 7200 RPM
Operating system: Microsoft Windows 7

Note that, in terms of hard drive space and memory, this specification should not be
considered the minimum required setup. Hard drive requirements is likely not higher
that 4 GiB and memory consumption not greater than 1GiB. As of yet, the minimum
hardware specification required to run the program has not been thoroughly tested and
is something that needs to be established in the future.

All in all, the program runs effectively on a modern consumer grade PC. Currently,
the SOE only supports Microsoft Windows as operating system. It is possible to port
the program to other operating systems (such as Linux or Mac OS) but this would
likely require a substantial amount of work.

For stereoscopic rendering, a consumer grade graphics card will not work, however. A
feature called quad buffering is required for this to work, and none of the major
hardware vendors (NVIDIA and AMD) have this option on consumer grade products.
This feature is only available on the Quadro series of graphic cards. During
development, a NVIDIA Quadro 6000 was used test this feature. It’s comparable to a
NVIDIA GeForce GTX 580 in computing power with the quad buffer extension being
the only significant difference.

BeFo Report 111

31

5 Future work
SOE, as it stands today, is still in a very early state that would not be considered
commercially acceptable. To get a viable product that can be sold to and used by
customers there are more work that need to be done. This section will cover both
some points that would probably need to be addressed before the software could be
considered complete as well as some ideas for new features and improvements.

5.1 Robots and Controls
One of the main aspects of the simulation is the robots that the operator control. The
models that are currently available in the simulation is, as noted above, base on the
behavior of real robots, but not exactly the same. To increase the level of realism and
real life usability of the product, contact should be made with robot manufacturers to
look at the option of importing exact replicas of the real robots that are used in the
field today. As the system is constructed with importing new models in mind this
process should be fairly pain free if access to 3D models of real robots were available.
These aspects are important as there are many different robot designs on the market as
well as different designs on the controls that an operator can be expected to use in
field work.

5.2 Environments
The tool chain to provide environments from point clouds is not a hundred percent
automatic which would be preferable. The problem here is that noise in the points
clouds can cause problems for many triangulation algorithms which might need
manual work to fix. How good the result will be also depends a lot on what algorithm
is used and the choice of algorithm in turn depends on what input is available, i.e. if
there are just points in the set or if there are normals for the points as well. There are
many algorithms to perform this kind of triangulation and more exploration of this
field could possibly find a better fit for this application.

5.3 Concrete parameters
Concrete behavior is one of the pillars of the simulation software and it is important
that this appears to be realistic. The current adhesion calculation model depends on
very few parameters. Granted, these are the most important ones but there is still room
for improvement. For example, most robot models allows the operator to control the
concrete volume that the pump outputs. One can also control the air pressure in the
nozzle as well as the accelerator dosage. All these variable can affect the optimal
distance the nozzle should have from the surface, which in turn affect rebound. If
these parameters could be modeled correctly to give an operator a good feel for when
and how to use these controls that would provide additional value to the simulation.

Other ideas on this topic is for the simulation to be able to calculate shear strength of
the sprayed concrete and have drop-outs occur. Different concrete mixes behave
differently and being able to experiment with different volumes of the ingredients and
see how this affects the result of the spraying would be very useful. Being able to also
model concrete compaction and compressive strength as well as other properties
depending on the concrete mix and the operators spraying would exceptional. Worth
noting here is that while some of the things here might be possible to accomplish,
simulating different concrete mixes and the finished results realistically is most likely
way beyond the scope of a real time simulation.

BeFo Report 111

32

5.4 Education and User interface
The simulator features a system that enables operators to take assignments and
automatically get en evaluation of their result. This system still lacks capability to
evaluate some aspects of the simulation which will need to be added. Other
improvements to this system would for example to be able to set specific areas of the
environment that should be part of the assignment evaluation. Also, the user interface
and feedback from the system while running an assignment need improvement.

Another important aspect here is to enable the operator to adjust all variables in the
simulation that they are able to change in real life. A few examples of this is the speed
of different joints on the robot, the air pressure at the nozzle, the concrete volume
used per hour and accelerator dosage. All these should be adjustable with the control
or through some other interface as they would be changed in real life on the specific
robot model that is used at the moment.

BeFo Report 111

33

6 Conclusion
As described above, the result of this project is a functional software that let shotcrete
operators perform shotcrete reinforcement in a virtual environment. User testing and
positive feedback from other persons in the industry indicates that it would indeed be
a useful tool in the education of shotcrete operators. Even though it might not replace
real practice entirely, it is a great improvement as it allows operators to become
familiar with the equipment and concrete behavior before being placed in a real
situation. The more mistakes an operator makes, the more expensive the work
becomes. Using this software, many of the mistakes made by entirely new operators
can be avoided or reduced and a lot of money can be saved during their education.

BeFo Report 111

34

BeFo Report 111

35

7 Works Cited
Autodesk. (n.d.). Maya. Retrieved 11 1, 2011, from http://usa.autodesk.com/maya/

B. Westerdahl, M. J. (2007). Simulator för träning av robotförare vid
sprutbetongsförstärkning, Förstudie. Göteborg: Visualiseringsstudion Chalmers,
SveBeFo Rapport K27.

BESAB. (n.d.). BESAB. Retrieved 11 1, 2011, from http://www.besab.com/

Bullet Physics. (n.d.). Retrieved 11 1, 2011, from www.bulletphysics.com

Crow, F. (1977). Shadow algorithms for computer graphics. Proc. SIGGRAPH, (pp.
242-248).

D. S. Ebert, F. K. Texturing and modeling, a procedural approach.
KranCom. (n.d.). Retrieved 11 1, 2011, from http://www.krancom.se/

Melbye, T. (1994). Sprayed Concrete for Rock Support. MBT International
Underground Construction Group.

N. Tatarchuk, A. R. (2006). Practical parallax occlusion mapping with approximate
soft shadows for detailed surface rendering. Association for Computing Machinery.

P. Börjesson, M. T. (2009). Shotcrete Simulator. Göteborg: Chalmers University of
Technology.

P. Mamassian, D. C. (1998). The Perception of Cast Shadow. Trends in Cognitive
Science, Elsevier Sciences LTD.

W. Donnely, A. L. Variance Shadow Maps. Computer Graphics Lab, School of
Computer Science, University of Waterloo.

Box 5501
SE-114 85 Stockholm

ISSN 1104-1773info@befoonline.org • www.befoonline.org
Besöksadress: Storgatan 19

BeFo Report 111

SIMULATOR FOR TRAINING ROBOT

OPERATORS

– Virtual education in shotcrete operation

Petter Börjesson

Mattias Thell

319050_Omslag_111_ny m loggo flyttad_3mm.indd 1 2011-12-28 16.34

	1 Introduction
	2 Background
	2.1 Problem description
	2.2 Goal
	2.3 Previous work
	2.4 Introduction to Computer Graphics

	3 Implementation
	3.1 General Requirements
	3.2 Robot
	3.3 Physics
	3.4 Hardware Interface
	3.5 Environment
	3.5.1 Concrete data
	3.5.1.1 Parallax Mapping
	3.5.1.2 Vertex Displacement
	3.5.1.3 Displacement Mapping

	3.5.2 Structure
	3.5.3 Concrete application
	3.5.4 Texturing
	3.5.5 Creation
	3.5.5.1 Modeling
	3.5.5.2 Procedural generation
	3.5.5.3 Point cloud data
	3.5.5.4 Environment Mesh Processing

	3.6 Graphics
	3.6.1 Deferred rendering
	3.6.2 Lighting
	3.6.3 Shadows
	Particle Systems
	3.6.5 Stereoscopic rendering

	3.7 User Tests

	4 Result
	4.1 Environment
	4.2 Robot
	4.3 Controls
	4.4 Concrete and Adhesion
	4.5 Statistics
	4.5.1 Concrete Depth Visualization
	4.5.2 Concrete Usage
	4.5.3 Adhesion
	4.5.4 Path of operation

	4.6 Assignments
	4.7 Usability
	4.8 Hardware and Software Requirements

	5 Future work
	5.1 Robots and Controls
	5.2 Environments
	5.3 Concrete parameters
	5.4 Education and User interface

	6 Conclusion
	Works Cited

