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Preface 
Operator training is essential for handling advanced machinery and vehicles. For 
many years training simulators have been used for pilots, and later for drivers of 
heavy vehicles like loaders, rock drilling machines, wood harvesting machines etc. 
Experience demonstrates considerable benefits from simulator training in decrease of 
damage, accidents and increased efficiency. Today development and manufacturing of 
training simulators for all kinds of advanced machinery has become an individual 
business field.  

However, up to now training simulators for shotcrete robot operators has not been 
available. Shotcrete is used for rock reinforcement in tunnels, mines and other 
applications. Shotcrete has demonstrated being more cost efficient compared to 
concrete lining in many cases especially in hard rock environment. Shotcrete 
application is a handicraft a demand skilled robot operators. Training in real 
environment implies large costs and unsecure circumstances.  Consequently shotcrete 
operators would benefit from simulator training before operating in the real 
environment.  

Training of shotcrete robot operators comprise both handling the equipment and to 
judge how this needs to be done based on intermediate parameters for the concrete to 
stick to the surface to largest possible extent.  Just like simulator training programs 
shotcrete robot simulator training include exercises for evaluating operator level of 
skill and performance.  

This project has developed a simulator software program usable to educate shotcrete 
robot operators. The idea was initiated by Tommy Ellison at BESAB and the 
development was conducted by a project group at Chalmers Visualization Technology 
by Petter Börjesson and Mattias Thell supervised by Börje Westerdahl. Financial 
support was provided by BeFo/Formas and SBUF. The project will continue in a 
commercial phase under the name of Edvirt in cooperation with Encubator AB at 
Chalmers University of Technology.  

Stockholm in December 2011 

 

Mikael Hellsten    
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SAMMANFATTNING 
Sprutbetong används för att förstärka bergstrukturer under konstruktionen av tunnlar, 
gruvor och många andra projekt. Betongen slungas i hög hastighet på ytor med hjälp 
av tryckluft. För att hjälpa denna process används ofta robotutrustning. Dessa robotar 
styrs manuellt av operatörer som är ansvariga för att utföra förstärkningsarbetet enligt 
specifika instruktioner och regler. Kvalitetskraven för denna typ av arbete är mycket 
höga och operatörerna måste vara välutbildade både i teorin bakom arbetet och i 
användandet av utrustningen. I dagsläget utförs den största delen av utbildningen ute 
på arbetsplatser. På grund av nya operatörers oerfarenhet leder detta till ökade 
kostnader, osäkra arbetsförhållanden och ökad tidsåtgång. 

För att minska problemen med helt oerfarna operatörer ute på riktiga platser har detta 
projektet gått ut på att utveckla en mjukvara som ett alternativ till praktisk utbildning. 
I mjukvaran kan framtida sprutbetongoperatörer virtuellt kan träna på de viktigaste 
färdigheterna som krävs för att korrekt styra en sprutbetongrobot. Mjukvaran har 
utvecklats i programmeringsspråket C++ och använder sig av realtidsgrafikramverket 
OpenGL och består av en simuleringsmotor som kan återskapa arbetsmiljön för en 
sprutbetongoperatör samt en grafikmotor som kan visuallisera miljön i 3D på en 
vanlig bildskärm eller i sterioskopisk 3D med hjälp av glasögon i aktiv stereo. På 
detta sätt kan man med en vanlig dator erbjuda operatörer en inblick i en typisk 
arbetsmiljö där man kan styra en robot med realistiska kontroller och få omedelbar 
återföring på hur robot och betong beter sig i olika sammanhang. 
Simuleringsmjukvaran består av följande komponenter. 

Sprutbetongroboten och den tillhörande kontrollen är en av de viktigaste aspekterna i 
simuleringsmjukvaran och är en av de punkterna som det jobbats med för att få en så 
realistik upplevelse som möjligt. Först och främst så har ett protokoll utvecklats vilket 
gör det möjligt att koppla in riktiga robotkontroller till simulatorn. Detta innebär att 
robotar i simulatorn kan styras på samma vis precis som de hade styrts i verkligheten. 
Robotarna i sig importeras till simulatorn via 3D-modelleringsprogrammet Maya. En 
utökining till Maya har skrivits för att konstruera och exportera robotmodeller vilket 
även ger utvecklingsmöjligheter i form av att man kan lägga till fler robotmodeller på 
ett enkelt sätt i framtiden. Den robotmodellen som finns i den nuvarande mjukvaran är 
en testmodell som representerar en riktig robot. Roboten har en leduppsättning som 
liknar moderna robotmodeller på dagens marknad och styrs på samma sätt via den 
riktiga kontrollen. 

En andra viktig punkt för få en bra träningsupplevelse är att miljöerna man jobbar i 
återspeglar förutsättningarna som finns i en verklig arbetsmiljö. För att åstadkomma 
detta visualiseras arbetsmiljön så realistiskt som möjligt med hjälp av till exempel 
ljussättning och skuggor som grafikmotorn hanterar. Den geometriska information om 
arbetsiljöer är också viktig då ytans utformning är något en operator måste hålla under 
uppsikt för att kunna göra ett bra arbete. För att få så realistisk miljö som möjligt har 
det arbetats med att omvandla punktmoln från laserscaningar av riktiga tunnlar till 
geometri som kan laddas in av simulatorn. 

Den tredje punkten för att kunna träna operatörer är att roboten skall kunna spruta 
betong som fäster på ytorna i arbetsmiljön. För att åstadkomma detta så simulerar 
mjukvaran ett betongflöde med hjälp av partikelsystem samt beräknar hur mycket av 
betongen som fastnar på ytan man siktar på. Hur mycket betong som fastnar bestäms 
av vidhäftning. Vidhäftningen av betong påverkas av många parametrar som till 
exempel lufttrycket som betongen sprutas med, betongblandningen och hur hårt 
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underlaget man sprutar på är. De två parametrar som påverkar vidhäftningen mest är 
avståndet från munstycket till ytan samt att munstycket har en rät vinkel mot ytan.  
Hur bra vidhäftning man har avgör hur mycket av materialet som används effektivt 
och på grund av detta är avstånd och vinkel en av sakerna som simulatorn fokuserar 
på. 

För att veta hur bra resultat en operatör har beräknar och sparar simulatorn statistik 
över en mängd olika parametrar. Dessa kan operatören se antingen i realtid under 
träningspassen eller i efterhand efter avslutad övning. Några av parametrarna som 
sparas är betongvolymen operatören har använt. Det sparas även hur mycket av detta 
som är effektivt använt och hur mycket som slösats. Operatören kan även se vilket 
mönster munstycket har tagit under övningstillfället samt undersöka tjockleken över 
hela arbetsytan. Med hjälp av statistiken och de visualiseringsverktyg som finns i 
simulatorn kan operatör eller handledare analysera ytor och betongmängder för att 
avgöra vad som gick bra och dåligt under övningstillfället. 

Simulatorn inkluderar även ett kurssystem i vilket man kan sätta upp övningar som en 
operatör skall få godkänt på för att klara kurser. Detta system använder sig av 
statistiken som simulatorn samlar in under ett träningspass och analyserar den 
automatisk utefter de kriterier som är specifierade för övningen. Operatörer får logga 
in i systemet med sina användarnamn och systemet kan sedan hålla reda på övningar 
och kurser som olika användare har klarat. Detta skulle kunna utnytjas i sammband 
med kurser eller certifieringar i olika sammanhang. 

Huvudmålet med  mjukvaran är att den ska användas för att ersätta så stor del som 
möjligt av den praktiska utbildningen för helt oerfarna operatörer. Förmodligen 
kommer inte praktisk träning kunna ersättas helt då det är svårt att få en simulering 
såpass verklighetstrogen men kan man till exempel halvera tiden praktisk träning är 
det väldigt värdefullt. Förväntningen är att mjukvaran och virtuell träning avsevärt 
kommer att reducera kostnaderna för att utbilda operatörer genom att minska tiden 
oerfaren personal opererar i riktiga projekt. Detta leder i sin tur leder till mindre 
materialspill, mindre korrigeringsarbete, kortare tidsåtgång samt att man kan undvika 
säkerhetsrisker associerade med oerfaren personal. 

Nyckelord: sprutbetong, simulering, datorgrafik 
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SUMMARY 
Sprayed concrete, or shotcrete, is a method of applying concrete as a reinforcement 
agent during construction of tunnels, mines, and many other projects. The concrete is 
projected pneumatically onto surfaces at high velocities. To aid this process, robotic 
equipment is used. The robots are manually controlled by operators that are 
responsible for performing the reinforcement according to regulations and specific 
instructions. The quality demands on this type of work are very high and the operators 
need to be well educated in controlling the equipment and understanding established 
procedures. In the industry today, education is mostly performed on live production 
sites. Due to the inexperience of beginners this induces extra costs, decreased safety 
and increased production time. 

With the goal of alleviating this problem, in this project, a virtual software system for 
the education of shotcrete operators has been developed. The software has been 
developed in the programming language C++, using the real-time graphics framework 
OpenGL. 

The software program is capable of simulating the shotcrete experience and allows 
users to operate a robot in real time and receive instant visual results. This is 
performed by operating an authentic control device which is connected to the 
computer, relaying signals to the virtual robot. Concrete flows from the nozzle of the 
robot, adhering to the surface. The adhesion itself is dependent on various parameters, 
such as distance and angle to the surface. Available to the users are a number of 
options for feedback, both during and after a training session. These include real-time 
adhesion feedback, visual aids and statistics.  

The software is to be used to partially replace real world practical education. This is 
expected to significantly reduce the costs for educating operators. Moving the 
education to a virtual setting will also greatly decrease, or completely eliminate, 
safety concerns during training. 

Key words: shotcrete, simulation, computer graphics 
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1 Introduction 
This project have been carried out at the Department of Structural Engineering, 
Construction Management, Visualization Technology with the support  of Mikael 
Johansson, Mattias Roupé and Börje Westerdahl. 

Tommy Ellison works with shotcrete at BESAB in Göteborg and is the person that 
came up with the idea and initiated this projekt. Tommy and BESAB have provided 
valuable industry experience to the projekt. 

Ulf Assarsson at the Department of Computer Science and Engineering acted as 
advisor on computer graphics issues during the development of the software. 

In the beginning of the project a number of industry professionals from different 
Swedish companies were invited to partake in a reference group to provide input and 
feedback during development. Meetings with this group were held a few times each 
year and the feedback from these meetings helped the project a lot The following 
people were invited to partake in the meetings: 

-Martin Bergström - Tyréns 
 Regional chief, west 

-Lars O. Ericsson, Chalmers University of Technology 
 Associate professor at the division of Geology and Geotechnics 

-Henrik Eriksson - BESAB 
 Experienced operator of shotcrete robots. 

-Quanhong Feng - 3D MultiInfo 3D Laser Scan Solution AB 
 Works with laser scanning of tunnels and other construction sites. 

-Mikael Hellsten - BeFo 
 Research director at BeFo 

-Per-Erik Josephson, Chalmers University of Technology 
 Professor at the division of Construction Management. 

-Benjamin Krutrök - LKAB 
 Chief of produktion of shotcrete and concrete at KGS AB. 

-Robert Sturk - Skanska 
 Technical chief. 

-Gunilla Teofilusson - CBI Betonginstitutet 
 Works with education in the use of concrete in different areas. 

-Per Vedin - Trafikverket 
 Rock technician at Trafikverket 

-Kjell Windelhed - Trafikverket 
 Rock technician at Trafikverket 
 

  



 

BeFo Report 111 

2 

  



 

BeFo Report 111 

3 

2 Background 
2.1 Problem description 
In the construction and mining industry, an important aspect of the work is the ability 
to rapidly and effectively strengthen existing rock surfaces and structural elements 
using a reinforcing material. Typically, the material which is used for this is concrete. 
The primary method for applying this concrete is to pneumatically project it onto a 
surface at high velocity. The concrete flows in a hose and out through a nozzle at the 
end. This is called sprayed concrete reinforcement, shotcrete reinforcement, or simply 
shotcrete. 

Shotcrete reinforcement is most often performed with the help of a robot and is used 
during construction and repairs of tunnels, mines, rock shelters, and many other 
scenarios. The robots are manually controlled via remote by operators that are 
responsible for performing the reinforcement according to regulations and specific 
instructions, such as concrete thickness. Also, to achieve sufficiently good results, the 
nozzle must be kept at an optimal distance from the surface, in the correct angle. This 
is not an easy task as the working surface is often uneven and fragmented, for 
example in the case of blasted rock in mines or railway tunnels. 
Today in Sweden, there are no educations for shotcrete robot operators supported by 
the government. All education on the practical aspects of shotcreting is therefore 
performed internally at companies that do this kind of work. The mining industry is 
experiencing a growing market and there are extensive plans for new infrastructure 
projects. This is one reason to believe that demand for shotcrete robot operators will 
increase in the coming years. 

To learn how to operate a shotcrete robot correctly, practical training is essential. 
Today, this is mostly performed at a live production site with supervision from an 
experienced operator. This quickly becomes very expensive both due to material 
waste as well as corrections needed where the necessary quality requirements are not 
met. Another option available is to put students in a dedicated practice environment. 
This option has the benefit of not having projects suffer from any mistakes made 
during training. The downside is that costs are still high as material, equipment and 
preparation of the environment is expensive.  

It takes a lot of practice with a robot before an operator can be considered fully 
educated. This leads to high costs for the companies and there are no particularly 
effective training methods available. An alternate method which lowers costs is 
needed. At BESAB, the idea was born to educate nozzlemen in a virtual environment. 
This would likely greatly reduce costs by reducing faults, improve safety, decrease 
installation times, and be a good supplement to practical training.  

2.2 Goal 
The goal with this project has been to develop a computer simulation that can be used 
to educate shotcrete operators in a virtual environment. To accomplish this, a 
computer program has been developed where operators can perform shotcrete 
reinforcement in a virtual environment, in real time. The aim has been to produce a 
realistic simulation where the operator can learn to maneuver a shotcrete robot, learn 
the procedures of concrete application and review different quality aspects of the 
result. This includes statistics such as surface coverage, concrete thickness and 
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material consumption. The idea is that such a simulator can replace part of the 
practical training and in this way avoid many of the expensive mistakes new operators 
do at real work sites. 

2.3 Previous work 
In 2007, a pre-study was compiled at Chalmers Visualization Technology (B. 
Westerdahl, 2007). This report showed that it's a reasonable goal to try and produce a 
virtual training system. By 2009, further development was done as a master's thesis 
project (P. Börjesson, 2009) at Chalmers. During this project a prototype was 
developed which includes virtual tunnel environments, real time concrete updates and 
robot control. The prototype produced here showed that it would definitely be 
possible to produce a training simulator for shotcrete robot operators.   

2.4 Introduction to Computer Graphics 
The following chapters can at times become quite technical in nature and much of it 
revolves around the domain of real-time computer graphics. It is understandable if the 
concepts can seem far from trivial, and it is the hope of the authors that most people 
should still be able to follow along. Therefore, this section contains a (very) brief 
introduction to the topic, along with several terms that is used throughout the rest of 
the document. 

Digital images are constructed of a two-dimensional grid of colored points, or pixels. 
Each pixel consist of a triplet with three colors; red, green and blue. Each of the three 
colors is specified with a value ranging from 0 to 255. This means that each pixel is 
capable of representing about 16.7 million (256^3) different color values. 

The most common way of modeling 3D geometry is to use polygons. Due to its 
simplicity, the most commonly used polygon is the triangle. A triangle consists of 
three points in space, or vertices, which is the least number of points required to 
represent a surface in three dimensions. Combining triangles, we can approximate 
very advanced shapes and this is the way most real-time computer graphics handle 
geometry. A collection of triangles that represent an object is often called a mesh. 

 

 

 Figure 1: Left, a triangle in 3D space. Right, a 3D mesh built of triangles. 
Cameras in 3D function much like its real world counter-parts. It is set up with 
position, direction, rotation and other properties, such as field of view. Through a 
process called rasterization, the objects seen by the camera are projected onto pixels 
on the screen. The process of displaying a 3D scene on a screen is called rendering the 
scene. 
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A texture is a color image that can be applied to a mesh in order to give it color and 
structure. For example, you might apply a texture depicting bricks to a flat mesh to 
give it the look and feel of a solid wall. Other than color data, a texture can also be use 
to convey different kinds of information, such as height or depth. 

 
 Figure 2: A brick texture applied to a mesh surface. 
Lights (and shadows) can be added to enhance the quality of the rendered image. 
Lights alter the shading of objects. In computer graphics, as well as in classical 
illustrations, shading refers to the effect of applying different levels of darkness to 
different parts of an object, relative to its position to the light. In computer graphics, 
the nature of the interaction between the object and the light is also considered when 
applying this term. Lighting is dependent on the so called surface normal. A normal 
describes the direction of the surface relative to the light source. Normals are most 
often specified per vertex. 

Nowadays, the rendering capabilities of a computer are enhanced by specialized 
hardware, graphics cards. Such a card is equipped with a so called Graphics 
Processing Unit (GPU) that does all the calculation legwork. Computers are also 
equipped with a Central Processing Unit (CPU), which takes care of non graphics 
related calculations. 
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3 Implementation 
This section describes the implementation details of the simulation software. The 
different parts of the program are detailed along with considerations and requirements 
concerning them. The software has not yet a name, but for the sake of brevity, in this 
and following chapters, the abbreviation SOE (Shotcrete Operator Educator) will be 
used. 

At the start, a rough requirements specification was written, and the major parts of the 
software were laid out. The requirements for the software were jointly established by 
the software development team and representatives from the industry. Succinctly, the 
plan consisted of splitting the project into a number of separable pieces, each 
responsible for a specific task. This separation of concerns is not only a fundamental 
theory of practice in computer science, but it also allowed the development team to 
work on different parts in parallel. All parts of the system were developed iteratively, 
and evolved throughout the project. 

3.1 General Requirements 
On the technical side, a number of requirements were established early on. Not 
pertaining to any particular section of the program, these were constraints that were 
determined to be important in all aspects of the program. 

SOE has, of course, always intended to be a real-time simulation. This means that 
there must be some constraints on minimum frame rate allowed. It was decided that 
this limit be set to 60 Hz, or 60 updates per second. At this frame rate, the brain can 
no longer distinguish between individual frames of images and the result is a smooth 
viewing experience. In turn, this means that each frame can, at maximum, take 16.6 
milliseconds to compute.  

The domain requirements for the software were not set in stone, and in fact still aren’t, 
at the beginning of the project. Should a change in these requirements occur, it was 
therefore very important that changes to the design be implemented smoothly. This 
meant that the code needed to be extensible and modular. 

3.2 Robot 
The prototype featured a functional, although aesthetically displeasing, robot model. 
While technically correct, this robot model was on par with older robot models and 
not similar to the modern equipment that is in use today. Therefore, it was decided 
that a new model would be needed, replicating the functionality that is found in 
modern robotic equipment. At the same time, a system to more easily create and 
import robots to the simulator was developed. 
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 Figure 3: Evolution of the robot model used in the project. 
The data needed to specify a complete robot model consists of a few pieces that need 
to be specified at creation time: 

3D mesh and Texture Data 
Detail information that defines how the robot looks once in the simulator. 

Physics Collision Data 
The graphical and physical representation of the robot is separated in order to make 
data processing more efficient, as seen by the engine. The collision hull consists of a 
number of low-detail convex shapes. 

Joint Connections 
The robot arm consists of a number of pieces connected by joints. Each joint can 
either be rotational or translational and fixed with certain constraints. 

Lights 
A robot usually has a number of spotlights on its hull. 

Nozzle 
The position and direction from which the concrete flows. 

 

 
 Figure 4: Construction of the robot inside Maya. 
The team used a program called Autodesk Maya (Autodesk) to construct and 
assemble robot models. Out of the box, Maya is a 3D modelling and animation 
solutions that is widely used in the games and movie industries. Alongside of 3D 
mesh authoring, it is also capable of loading custom plug-in modules. This capability 
has been exploited and a custom “robot authoring” plug-in for Maya has been written. 
This plug-in has allowed the team to specify all the necessary pieces (as seen above) 
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in a single environment. This information is exported to a binary file which is loaded 
by the simulator program. 

3.3 Physics 
It was decided that a third party solution should be used for the physical simulation of 
the robot and its parts. Given the lack of expertise in this area and that there are a 
number of highly regarded physics libraries available this seemed like a wise choice. 
It was decided that an open source solution would be the best fit and that the Bullet 
Physics library (Bullet Physics) would be used. The Bullet library is a mature, widely 
used project with performance benefits over its competitors. Essentially, such a library 
takes the physical representation of the robot (that is, the physics collision data, as 
explained above) and calculates motions of entities as accurately as possible. 

At first go, the SOE robot was assembled using Bullet constraint modifiers. These 
allow rigid bodies to be jointed together and move relative to each other. A shotcrete 
robot is fundamentally a series of connected parts operating co-operatively. It was 
discovered that this connectivity posed significant problems for the physics library 
which struggled to maintain stability of the system. This instability manifests itself as 
wild jumps and jitters instead of a smooth continuous motions. 

The instability itself has its cause in how the computer performs the physics 
simulations. Rather than exact knowledge, real-time simulations operate on 
predictions of motion; given an object’s speed, and mass (and other properties) and 
given some time in the future, it can be calculated where it should be at that time. 
There are several numerical integrator solutions that can be used for this, with the 
better ones resulting in smaller magnitudes of error. A more accurate integrator or 
running enough iterations to produces a stable result induces a heavier load on the 
computer, so a sufficient middle ground must be taken. Nonetheless, at some rate 
errors will inevitably creep in to the results, causing instability. 

In a sense, a series of connected entities will propagate errors the longer the chain is. 
The errors will accumulate to a point where the simulation is so unstable that the 
results are no longer usable. Therefore, the constraint modifier system was foregone 
in favor of a more direct approach. Instead of using Bullet’s dynamic physics 
simulation to control the joints, a simpler and more stable solution is now used. This 
works by letting all joints connect to each other at a static point. Instead of forces 
being applied in the physics system each joint has an individual force applied to its 
center of rotation or translation. Each transform is then propagated along the chain of 
joints, producing a good result of how a robot behaves in reality. 

It should be noted that the above described physics simulation has very little to do 
with the concrete flow and adhesion. These systems are handled separately in a 
different part of the program. 

3.4 Hardware Interface 
To be able to control robots in the simulation, some way of connecting the remote 
control to a PC was needed. KranCom (KranCom), a company based in Göteborg, 
specializes in this kind of equipment, and they were able to modify an authentic robot 
control device for our purposes. The physical interface used between robots and 
control devices has been re-interpreted to connect to a PC environment instead of a 
robot. Via radio, the device transmits signals about button presses and joysticks 
movements to a receiver. The receiver is connected to the computer via a serial 
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interface. These serial signals are interpreted by the SOE and results in actions by the 
robot. 

 
 Figure 5: Example of a control used by shotcrete operators. 
It was a fairly straightforward procedure to map the signals from the device to events 
accepted by our software. The receiver sends a constant stream of bytes and these 
bytes must be interpreted as button presses. Some trial and error testing was necessary 
to determine which signals corresponded to which buttons.  

 
 Figure 6: Connection scheme for the equipment. 
This software bridge has naturally been written with extensibility in mind and the 
proprietary control device currently in use can be replaced for another with minimal 
work. This feature is important in order to support new kinds of hardware, both in 
terms of robots and control devices. 

3.5 Environment 
This section will describe how the environments were created, how they are saved and 
loaded and finally how they are rendered. 

3.5.1 Concrete data 
Arguably, one of the most important parts of the SOE is the interaction between the 
concrete and the surface to which it is applied. Technically, this poses some 
interesting questions and introduces a number of requirements. The concrete needs to 
interact with the environment by filling cavities, creating extrusions and smoothing 
the surface. It also needs to be rendered convincingly. Also, making assumptions is 
difficult because the user can potentially shoot concrete at any point in the 
environment at any given time. A number of techniques have been considered and 
tested. 
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3.5.1.1 Parallax Mapping 
Parallax mapping (N. Tatarchuk, 2006) is a texture based technique that was tried 
during very early versions of SOE to see if it would be useful for visualization of both 
rock and concrete surfaces. The interesting thing about the method is that it allows for 
the rendering of increased detail (such as small holes, extrusions and the like) without 
actually increasing the complexity of geometry. This technique works by using a 
height map texture applied to the surface and, for each rendered pixel, a ray trace is 
performed against this height map. During the trace, texture coordinates are offset 
until the ray hits the surfaces of the height map and this creates the illusion of depth in 
an inherently flat surface. Parallax mapping works very well for creating more visual 
detail without increasing geometric complexity and it's easy to scale the resolution of 
detail by increasing or decreasing the height map resolution. Unfortunately it suffers 
from a few drawbacks. 

For the purpose of this project, each geometric surface needed to be mapped uniquely 
to a corresponding height map texture. This is because concrete data can be applied 
(uniquely) to any part of the environment. Due to hardware limitations and texture 
mapping issues, one texture that covers the entire environment was not deemed 
feasible, so this was split up into several height maps that each covers a part of the 
environment. This caused a spike in memory requirements, especially considering the 
high resolution textures that were needed.  

Splitting the height map into many parts also has its share of problems. This technique 
does not cope well when close to the edges of the height map as the traced ray might 
sample from outside the texture. This is not a problem for a tileable texture, but this 
was a luxury that could not be had. To alleviate this problem the best solution in this 
case was to use mirrored texture sampling although it does not eliminate the problem 
entirely. 

By including lighting information, shadows can be achieved this way as well. For 
each light, each pixel traces a ray to the light source and checks if it intersects the 
height map or not. High quality shadows can be produced this way but this would 
require a huge amount of texture samples, making the program extremely fill-rate 
intensive, especially for multiple light sources. 

One last problem with this technique is the most decisive one. Since it only operates 
in texture space, the viewing angles to the surface are of great importance. With a 
perpendicular view angle, hardly any artifacts can be noticed. However, when the 
angle to the surface becomes too steep, the depth perspective disappears entirely in 
favor of ugly aliasing issues. The concrete needs to be able to build up on the surface, 
to potentially large heights, and still look good. But, alas, this cannot be achieved with 
this technique. 

3.5.1.2 Vertex Displacement 
The above problems can be averted by opting to do direct vertex displacement. 
Instead of using texture tricks, the geometry itself is modified. By saving and updating 
the concrete value per vertex and directly modifying each vertex position the 
geometry can be shaped in any form. The drawbacks of this technique are for one that 
the geometric complexity needs to be fairly high to produce good results. Also, since 
the CPU does the legwork of updating the mesh, synchronization with the GPU is 
necessary whenever vertices are modified. To keep within acceptable frame rates, 
there is also the need to carefully way the amount of vertices that are affected. Still, 
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these are drawbacks that can be worked around and this method is in use in the 
current version of SOE. 

3.5.1.3 Displacement Mapping 
Another texture based technique that was looked at is displacement mapping. This 
works similarly to parallax mapping in the sense that it uses height map textures to 
store the concrete data but instead of tracing a ray per pixel it displaces the vertex in 
the vertex shader. Since the vertex geometry itself is altered, this means that this 
technique helps to avoid the most sincere problem with parallax mapping. Although it 
requires a mesh with a significantly higher vertex count, tests showed that this was not 
a big concern. 

A problem with this technique is that the vertex displacement direction must be 
specified beforehand. Most often the displacement is done along the normal or some 
pre-specified axis. Concrete application cannot be easily predicted, since a user can 
spray concrete where- and however she likes. This poses a considerable problem for 
this method. 

It was later discovered that this problem can be overcome by introducing a second 
texture that stores displacement directions instead of raw height values. This texture 
would look and behave similarly to a normal map and be used to push vertices in 
dynamic directions. The benefit of this is that the geometry itself is never altered in 
any way. This would allow the program to access the unaltered environment data (that 
is, before any concrete was applied), something that would potentially be of use for 
statistical and inspection purposes. 

3.5.2 Structure 
After the concrete and environment rendering method was chosen a data structure was 
create the be able to support this. Environment meshes in SOE is constructed out of 
segments and there are a two reasons for this, concrete application efficiency and 
rendering efficiency. The bounding volume of a mesh is split into a 3D grid of boxes 
and each box that contains geometry is called a segment, together the segments make 
up an environment. Splitting up the geometry like this makes both rendering and 
updating the geometry a bit more complex but it also provides performance benefits 
which are needed to keep the simulation running at real time frame rates. 

 
 Figure 7: Visualization of environment segmentation. 
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When both rendering and updates are performed they start by selecting which 
segments are affected by the current operation. This is done by doing collision tests 
against the segment bounding boxes when updating and doing view frustum culling 
against the bounding boxes when rendering. During rendering this applies both for 
rendering the operator perspective as well as rendering of shadow maps for lights. 
Because of this, the amount of geometry that needs to be processed during these 
operations is minimized and a lot of performance is saved. 

A segment contains a number of different data collections: 

1. The indices of all vertices in the mesh that fall within the bounding box of the 
segment. This data is used when a segment is updated with concrete. During updates, 
the software first find which segments that were possibly affected by the sprayed 
concrete. After that each segment is responsible for updating the vertices assigned to 
it and uploads the new data to the graphics card. It is not possible for a vertex to reside 
within more than one segment’s bounding box, which means that each segment has a 
unique set of vertex indices. This ensures that during updates, every vertex is 
processed exactly once. 

2. A set of triangles that lies within the bounding box of the segment. As a triangle is 
created out of 3 vertices, it is possible that it crosses the border of a segment and so is 
contained in more than one segment. In this case the triangle is arbitrarily assigned to 
one of the segments. This triangle data is used to draw each segment during rendering. 
The unique assignment of triangles ensures that each triangle in the original mesh is 
rendered a maximum of one time each frame. Besides the first set there is also the 
possibility to save another extra 2 sets of triangles to render the segment at different 
levels of detail. 

3. A set of triangles that has the possibility to affect the normals and tangents of any 
vertex assigned to the segment. This extra triangle data is needed during updates when 
each vertex assigned to the segment updates its normal and tangent after movement 
incurred by application of concrete. A vertex normal (and tangent) is dependent on all 
triangles that use it and as a vertex might be used in a triangle that is drawn by a 
different segment, the triangle set from 2 is not enough. This ensures that all vertices 
will always have the correct normal and tangent. 

3.5.3 Concrete application 
Concrete updates are performed in discrete increments and an increment consists of 
several steps. First, a ray is cast into the environment to check for intersections of 
surfaces that accept concrete. The intersection test is resolved firstly through a broad 
phase checking bounding boxes of segments. If a hit is found here, a narrow phase 
looks closely at the particular segment and determines if and where an exact triangle 
collision occurred.  

When an exact hit has been found, the system looks up all the vertices that could be 
affected in a certain radius around the hit point. This radius corresponds to the radius 
of the concrete ray. Concrete adhesion calculations are then performed on each 
affected vertex. The adhesion calculations return a percentage value from 0 to 100%, 
where the latter obviously correspond to complete adhesion. Using other data, such as 
the angle of incoming concrete and the distance to the surface, the exact translation of 
the vertex is calculated. This calculation is weighted with the adhesion ratio and the 
3D mesh is updated. In a linear fashion, the adhesion ratio is also used to determine 
the amount of rebound.  
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 Figure 8: Example of which points are selected for concrete adhesion and how 
 the grid of points on an actual surface might look like. 
The adhesion calculation model currently in use is based on (Melbye, 1994), pictured 
below, and currently takes into account what has been found to be the most influential 
parameters. The software can be altered to consider additional parameters and the 
adhesion model can easily be expanded to calculate the results differently.  

 
 Figure 9: Rebound behavior of shotcrete. 
The exact equation that is in use is an approximation of the above diagram and 
considers distance and angle to the surface. The first part concerns the distance, and is 
calculated as 

𝑓 = – (𝑑− 𝑜)𝐶 + 1 
where d is the distance from the surface, o is the optimal distance, C is an even 
constant controlling the shape of the curve. Taking angle considerations into account, 
the actual adhesion can be found by 

𝑎 = 𝑓 ∗ (𝑁 ∙ −𝐼) 
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where N is the normal of the surface and I is the incident direction. Here, a is defined 
in the interval [0,1]. This formula represents a reasonable approximation of real world 
conditions. Presently, it does not take into account surface parameters (such as the 
type of rock) or accelerator dosage, but can be altered easily. 

SOE performs concrete updates at a fixed time interval. This value can be easily 
adjusted and is currently set at 50 milliseconds, which translates to 20 updates every 
second. The faster the update interval is the more smooth the application of shotcrete 
will look but it also means the computer has to do more calculations. A tradeoff is 
made here where one have to balance the smoothness of the updates against the 
performance cost of the updates as to keep the target frame rate. 

3.5.4 Texturing 
The concrete application process causes the environment mesh to change. This is fine 
by itself, but can cause issues for texturing. Texturing meshes requires texture 
coordinates, which are pieces of information about how a texture is applied to the 
mesh. When altering the mesh, especially a great amount (such as creating a large 
stalactite) the texture coordinates become corrupt. This will manifest itself as 
stretching the texture which looks far from desirable. Even creating static texture 
coordinates can be a very difficult task, depending on the complexity of the geometry. 
Clearly an alternative solution was needed. 

These problems are solved by performing so called tri-planar texturing in the 
fragment shader.  This is done by projecting texture coordinates along the X-, Y- and 
Z-axis and picking the projection that fits best, i.e. the projection axis that is closest to 
being perpendicular with the triangle surface. When the triangle surface lies on the 
border between projections a blend is performed between the differing mappings. This 
system allows for texturing that is always smooth and no effort has to go into 
generating and updating UV-sets for the geometry. The downside is that a great many 
texture samples are needed, and hence has performance penalties, but this was 
decided to be acceptable. 

3.5.5 Creation 
The features in the simulation and the design of the environment structure put some 
restriction on the meshes that represent the environment. For example the mesh need 
to have an even distribution of vertices over the surface area as well as a sufficient 
resolution of vertices to be able to model the concrete behavior correctly. There are 
many possible ways to create a mesh that fulfill these requirements. 

3.5.5.1 Modeling 
One approach is to simply create the desired environment in a modeling program such 
as Maya or Mudbox. The amount of detail that a simple blasted rock surface requires 
to appear realistic can be very difficult to create. Creating this amount of detail is both 
hard and time consuming as well as beyond the modeling skills of any person 
currently working on the project. Even so, attempts have been made to model this 
type of environments. Also, modeling tools have been used to enhance or repair an 
already existing model. 

3.5.5.2 Procedural generation 
The options of procedurally generating (D. S. Ebert) surface detail on simple meshes 
can be used to decrease time and modeling skill requirements. Options were explored 
to create environment meshes from scratch as well as to enhance existing ones using 
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this technique. Procedural generation is quite common in many areas of computer 
graphics and it is a method of creating geometry or textures from mathematical 
formulas. 

It was found that generating entire environments from scratch is far from trivial 
realistic results are of the essence. Instead, creating a rough model by hand in a 
modeling program that has the general shape of the desired environment is a 
comparatively easy task. Surface detail can then be generated procedurally with the 
basic mesh as an outline. This method creates a lot better results and has been 
integrated successfully into the production pipeline. 

3.5.5.3 Point cloud data 
Point Clouds is a data format where an object or environment is modeled by a large 
set of points each with a 3D position. These clouds can approximate any object and 
the more points you have the better the representation becomes. Point Clouds are 
acquired by scanning an object or environment in reality with a laser scanner. The 
scanner does this by sending out rays of light which are reflected when they hit an 
object. The reflected light is measured by the scanner and it creates a point on the 
position where the light hit the object. Later, a computer can use the point cloud to 
recreate a model of the scanned object. 

 
 Figure 10: Example of a mesh generated from a point cloud. 
This process is quite common today and it is common for construction companies to 
carry out laser scans of tunnel projects. SOE can obviously benefit from this process 
and point cloud data models have been acquired with the help of Quanhong Feng at 
ÅF Infrastructure. 

The main problem with this method is to find a suitable algorithm for the 
reconstruction of the point data into a triangulated model that is usable by the 
simulation software. This is a fairly well researched area and there are many 
algorithms that can create triangulated geometry from point clouds. The problem is 
that not many of the algorithms that have been looked at produce an output that is 
directly usable by SOE. This is mostly because the need for a watertight mesh as well 
as a regular distribution of vertices in the resulting mesh. Many algorithms are instead 
focused on reproducing the geometric object with as few triangles as possible. To 
automate as much as possible in the environment creation process software has been 
created that can do most of the work with converting triangle meshes to the 
appropriate format for the simulation. The process still require some manual 
intervention at times where reconstruction did not produce the desired result.  
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3.5.5.4 Environment Mesh Processing 
To handle the all the data associated with the environments a few utility programs 
were created to process the data into the right format as to be usable by SOE. 

Maya Plugin 
In the case of environments Maya is used in two ways. The first is to import models 
generated from point clouds and repairing areas of the model that might not have been 
correctly created during the conversion from point cloud to triangle mesh. The second 
case is to model a basic environment shape that can be used in the procedural 
generation in the processing software. When the models are finished a custom plugin 
extracts the data and exports it to a text based file format. Currently the plugin exports 
vertices, indices, tangents, and texture coordinates. 

Processing software 
The environment processing software is a tool written for this project to automate 
some of the work needed to take a generic mesh and make it ready for use in SOE. 
The tool takes a raw triangulated mesh as input and produces an output file in the 
form that the SOE expects. That is, chopped up into segments, and tessellated into a 
specified resolution. It also has the option of running a procedural displacement 
algorithm on the model, generating detail variations. 

3.6 Graphics 
A lot of focus has been put on the graphics of the simulation as this is one of the most 
important parts to provide the operators with a realistic experience. At the start of the 
project the software was a very simple prototype that had been developed during the 
master thesis work. The prototype was based on a rendering and scene hierarchy 
library called Open Scene Graph, or OSG for short. During the development of the 
prototype a number of problems both with OSG and the techniques used had been 
discovered that were considered serious drawback in a continued development of the 
simulator. At the time OSG was based on the 2.0 version of the OpenGL rendering 
API. This made it very hard or even impossible to access many of the features 
introduced in the modern OpenGL 3.0. Also, the scene graph structure that OSG 
inevitably made use of did not fit well with the team’s goals. Instead, a custom 
rendering architecture was built directly with OpenGL 3.3 which gave the 
development team greater flexibility. Creating a rendering system from scratch can be 
a huge undertaking. On the other hand, the target domain for the simulator was 
relatively narrow which made this task feasible and successful.  

3.6.1 Deferred rendering 
When designing the new rendering pipeline for SOE it was decided to base it on a 
deferred rendering approach instead of the classic Forward rendering paradigm. This 
is a shift that has become common in the games industry in recent years and it 
provides a number of benefits as well as some drawbacks. 

The major benefit of a deferred approach is that lighting calculations is decoupled 
from geometry. This works by rendering the scene in different passes. During the first 
pass, the geometry pass, all geometry is rendered as normal but instead of drawing 
directly to the back buffer the data is saved in a number of textures. These are 
commonly called G-Buffers and the data that is saved here is the color of the unlit 
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geometry, depth, normals and the specular properties of the material. This is all the 
data that is needed to calculate the lighting for each pixel in a later pass. 

Table 1. Channel usage in the deferred buffers. 

 
In the second pass all lights are drawn on top of the G-Buffers and each light uses the 
values in the buffers to calculate their contribution to each pixel. By decoupling the 
light rendering from the geometry rendering in this way it greatly lowers the 
complexity of shader development as the shaders drawing the geometry does not have 
to account for different light setups. 

A disadvantage of deferred rendering is that the G-buffers take a lot of memory and a 
lot of data need to be transferred each frame. It is also much harder to use hardware 
multisampling for anti-aliasing as multi sampled textures were not supported by the 
time this was implemented. To solve the problem of aliasing one of the post-process 
effects implemented was a AA-technique based on edge detection and blurring based 
on the color and depth values in the G-buffers. 

3.6.2 Lighting 
There are two types of lighting in the simulation, direct and indirect lighting. Direct 
lighting comes from spot and point lights and is the types of light that are directly 
noticeable by a user. They emit light and produce shadows. A point light is a point 
that emits light uniformly around it, in all directions. A spot light focuses the light 
through a cone in one direction. These types of lights can either be placed on various 
spots in the environment or mounted on the robot. All light sources in SOE use the 
same lighting model which is a fairly simple diffuse term plus a specular reflection 
term.  

Indirect, or ambient lighting, aims to approximate “residual” lighting from the 
environment and is an important, but hardly noticeable part of everyday life. The 
ambient lighting is just a fixed value applied to the whole color buffer in the lighting 
pass. Before ambient lighting is applied a processing pass is performed to calculate 
ambient occlusion which affects the strength of the ambient value for each pixel. This 
is done with a technique called Screen Space Ambient Occlusion (SSAO) which uses 
the depth relation between pixels to approximate how much they are occluded by the 
rest of the surrounding scene. Ambient occlusion was implemented fairly late in the 
development of the project but is an important part of the perceived feel. It helps to 
accentuate small crevices, openings and gaps in the environment which can help the 
user tremendously in discerning environment details.  

G-Buffer layout 

Normal.x Normal.y Normal.z Linear Depth 

Color.x Color.y Color.z Future use 

Specular Strength Specular Power Future use Future use 
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 Figure 11: Scenes rendered with(right) and without(left) SSAO. 
The lighting situation in a typical tunnel environment usually consists of a small 
number of very intense lights positioned on and around the robot. This creates a 
lighting situation with very large differences between unlit and brightly lit surfaces. 
While the human eye has evolved to be able to handle these situations a computer 
screen does not have the necessary range to handle this in a pleasing way. To alleviate 
this problem, a technique called high dynamic range (HDR) lighting is used. Using 
this, the scene is rendered using a higher range of lighting values and through a 
process called tone mapping, this high range is mapped to a range that the screen can 
present. 

3.6.3 Shadows 
Another subject closely related to lighting is that of shadows. Shadows are very 
important for human perception because without them it becomes hard to identify 
spatial relationship between different objects (P. Mamassian, 1998). In SOE, it’s very 
important for users to be able to determine the relationship between the nozzle and the 
environment.  

The shadow algorithm used in SOE is called shadow mapping (Crow, 1977) and is a 
well researched technique, that is fairly easy to implement and cheap to compute. The 
shadow mapping algorithm uses a square texture to essentially render an image from 
the light’s point of view. This works very well for spot lights as they emit light in a 
single direction which can be rendered into one texture. In the case of point lights, 
since they are essentially spherical, their field of view is infinite and cannot be 
accurately represented in a single texture (which would require infinite detail). 
Instead, this is usually approximated by using a number of textures (usually six) from 
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different sides. This process is not hard, but it makes it six times more expensive to 
calculate the shadow map for a point light than for a spot light. Therefore, point light 
shadows are not supported in SOE. In practice this is not a problem because in a 
typical shotcrete environment, the light sources you can expect to find are mostly 
various forms of spot lights.  

 

 
 Figure 12: Scene rendered with different effects. From top left to bottom right. 
 1. Only ambient lighting. 2. Added directional lighting. 3. Added SSAO. 4. 
 Added  shadow maps. 
The standard shadow mapping solution can (and usually does) make shadows appear 
jagged and hard edged. The exact shadow mapping technique that is used is called 
Variance Shadow Mapping (W. Donnely). This technique uses a statistical trick to 
smooth the edges of the shadow which make them look more realistic. 

 
 Figure 13: Difference between regular shadow maps and variance shadow 
 maps. 



 

BeFo Report 111 

21 

 
 Figure 14: Construction of a scene in the simulation. From top left to bottom 
 right: 
 1. Visualization of triangle meshes which are the base of the scene. 
 2. Applied textures. 
 3. Applied ambient lighting and SSAO. 
 4. Applied directional and point lights. 
 5. Applied tone mapping. 
 6. Applied variance shadow mapping.  
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3.6.4 Particle Systems 
Particle systems is a way to model dynamic systems of 
particles such as fire, smoke and water in computer 
graphics. This method is well suited for use in the simulator 
to represent the concrete flow, rebound, mist and dust that 
shooting of concrete produce in real life. These effects are 
important so the operator can know which direction the 
concrete ray is shooting as well as giving a more realistic 
environment. The particles in these system does not have 
any physical effect in the simulation environment but is just 
used to visualize the actions for the operators benefit. 

 Figure 15: Visualization of shotcrete ray. 

3.6.5 Stereoscopic rendering 
Stereoscopic rendering is a technique used to create a 
perception of depth on a two dimensional screen. Ordinary 
displays can of course show three-dimensional content, but 
when the image is projected to a screen with only two 
dimensions it still appears quite flat. Stereoscopic rendering 
aims to improve this and relies on specialized display 
devices and glasses to produce a better appearance of true 
3D on two dimensional monitors. Examples of this can be found in abundance these 
days in movie theaters where an increasing number of films can be viewed in 3D. 

The technique works by taking advantage of the way which the brain processes input 
from the eyes. Each eye processes input from two slightly varying viewpoints. These 
signals are combined by the brain into one seamless image. The separation of our two 
eyes is what makes humans able to perceive depth instead of a flat image. To display 
stereoscopic image then, we must render a scene from two slightly different 
viewpoints and feed each eye the corresponding image. The brain takes care of 
assembling the images and the outcome is a sensation of depth. Some new pieces of 
hardware are required to make this work: A high-frequency (“3D ready”) monitor and 
a pair of 3D glasses. 

A regular screen has an update frequency of about 60 Hz. At this frame rate, the brain 
cannot distinguish between individual frames, and the result is a smooth viewing 
experience. For stereoscopy, two images need to be displayed in the same amount of 
time. Since a normal monitor cannot display two images at once, they are displayed in 
turn and so the monitor needs a refresh rate of at least 120 Hz. Simultaneously, the 3D 
glasses synchronize with the monitor and feeds each eye the correct image. 

 
 Figure 16: Equipment used for quad buffered stereoscopic 3D. 
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Realism is of high importance in SOE. A higher degree of realism makes the learning 
process more accurate and pleasant. When talking to test users, they expressed a 
certain lack of depth awareness which made it difficult to accurately determine 
distances in the 3D environment. Stereoscopic rendering can help reduce this 
problem. 

Conceptually, the technical aspect of this new type of rendering was not that difficult; 
set up two virtual cameras instead of one, render the scene from both viewpoints, feed 
them to the connected 3D-capable screen, and enjoy the experience through the 3D 
glasses. This puts some strain on the software side which needs to be able to render 
two images instead of one each cycle, but this problem was not the most important 
one. In fact, it was hardware limitations that made the process difficult to achieve. As 
it turned out, even though the current hardware had all the necessary capabilities, the 
necessary functionality in the low level graphics API was not exposed when using a 
consumer-grade graphics card, such as the one that was used. To rectify this, a new 
type of graphics card was purchased that had all necessary facilities. When these 
hurdles had been overcome, it was a fairly straightforward process to have a 
stereoscopic version up and running. 

Calibration of the three-dimensional effect is of high importance. There are primarily 
two variables that affect the user. The first one is the distance between the two virtual 
eyes. The second is the focal plane, the point in front of the eyes where their focus 
directions meet. These parameters both affect the amount of depth perception as well 
as the “tolerance” which the user has towards the effect. Every person is different, and 
when the variables are different from what the user’s brain expects and can handle, 
tiredness and headaches can occur. It is important that the parameters can be tuned per 
user and not be too accented. 

3.7 User Tests 
User tests are important for any software product and SOE is no exception. On several 
occasions users outside of the development group has been invited to test the 
simulator. These users have consisted of people from a variety of positions. Arguably 
though, the most important group of people for this purpose is experienced shotcrete 
operators. 

Two senior shotcrete operators from BESAB have on a number of occasions been 
invited in to test the product and offer feedback. The feedback these expert users have 
provided has ranged a number of topics, from graphical adjustments to movement and 
scale of the robot. 

Naturally, user testing has provided invaluable feedback to the development team. If 
and when the development of the product continues, tests must continue throughout 
the development process, to iterate on improvements. 
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4 Result 
During the course of the project the goal has been to produce the basis for a software 
program, usable to educate shotcrete robot operators. At the time of writing of this 
report there exists a working version of the software produces during this project that 
accomplish this goal. This section will describe the major features of the simulation 
software. 

4.1 Environment 
First of all, the software has the ability to load and visualize environments that a 
shotcrete robot operator typically works in. Graphically, the gap between the 
simulation and the real world should not be too great. The environments should also 
resemble real work environments in size and shape. All this ensures that training in 
the simulation software will be beneficial. There are a number of ways in the current 
software to create new environments. 

Laser Scanning 
Laser scanning is arguably the most accurate way of achieving an accurate 
representation of a real environment, but it is also the most difficult format to work 
with. Often the point cloud data, which is the way the data is represented from the 
scanning process, contains large amounts of jitter and imperfections. It can also be 
difficult to reconstruct a triangulated mesh from the disjoint points of the cloud. 

Manual 3D Modeling 
Like any other 3D mesh, it is possible to create an environment by hand in a 3D 
modeling program, such as Autodesk Maya. The process is similar to sculpting. An 
artist carves, molds and alters the surface to look like a proper tunnel. However, it has 
proven very difficult to author environments with surfaces that resemble blasted rock. 

Procedural Generation 
Procedural generation is the process in which the computer uses mathematical 
formulas to create content. This process is used to add detail on either laser scanned or 
hand crafted models. 

When an environment have been created, the model need to be processed in a certain 
way to make it suitable for use by the simulator. To make the creation process as easy 
as possible a utility program has been written to process the model before it can be 
loaded into the simulator itself. 

4.2 Robot 
The simulation software has the ability to load different robots into the virtual 
environment. The robot currently in use in the simulator is based on the functionality 
of the Meyco Potenza. Reference photos were used to help the team build a 3D model 
of the robot. This new robot model has several advantages over the older one from 
previous versions of the simulator. It has improved mobility in terms of number of 
joints and axis of operation as well as improved visual appearance. It also conforms 
well to what operators can expect to work with in the future. While not an exact visual 
replica of its real world counter-part, it has the same movement options and joint 
configuration. 
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The choice of the robot model carries no bias towards any particular brand but was a 
result of ease of access to reference photos. Both the architecture of the program and 
the constructed tools have been designed in such a way that adding new robot models, 
that differ both in terms of aesthetics and functionality, is a smooth process. 

4.3 Controls 
A simulator of this sort would not be complete without the proper means of 
controlling the robot. This requirement has been satisfied, and a control device has 
been acquired and integrated with the simulation environment. The control device 
itself is an authentic, remote control device of the type that is used in the industry. 

The software facilities that have been developed to enable the use of this hardware 
interface is extensible and can be adapted easily to fit other control devices so that 
another control device from a different manufacturer can be included. 

4.4 Concrete and Adhesion 
One of the core aspects of SOE is the ability to actually shoot concrete in the virtual 
environment. The concrete spraying is accomplished by simulating a flow of concrete 
from the nozzle of the robot. When the concrete hits the environment an adhesion 
calculation determines how much of the concrete that sticks to the surface. With this 
information, the surface geometry can be recalculated. The simulation saves all data 
associated with the shotcrete spraying for later display. This enables operators to both 
experience how concrete behaves as well as inspect the result of their work in the 
simulation. 

4.5 Statistics 
As it is a simulated virtual environment that is being created, it is possible to not only 
visualize a real world scenario, but also enhance it in different ways. Depending on 
the needs of the operator (or the supervisor), different metrics of information can be 
displayed to aid the learning process. SOE currently records a variety of different 
metrics. 

4.5.1 Concrete Depth Visualization  
In the real world, thickness is measured by painstakingly taking manual surface 
samples on regular intervals, a time consuming and potentially inaccurate task. The 
virtual world, on the other hand, can make this easier. At each point of the surface, the 
amount of concrete is recorded. This information can be utilized to display the 
thickness of concrete. The values are reinterpreted as a color gradient. Blue colors 
signify low amounts (or no) concrete. The color shifts to green when the thickness is 
at or close to the optimal thickness (A setting which can be altered easily). Red hues 
signify a too thick layer of concrete. 
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 Figure 17: Visualization of concrete depth. 
 

4.5.2 Concrete Usage 
Another important metric is to measure the amount of used concrete. The system 
records information about the total volume as well as the percentage of which actually 
sticks on the surface. Given these two pieces of information, the waste percentage is 
calculated. Waste minimization is obviously an essential part of the education process. 

4.5.3 Adhesion 
The operator maneuvers the machine, positioning the spray nozzle relative to the 
surface.  While doing so, the potential adhesion is calculated. At any time, even 
before any concrete has been used, the operator can see the effect the current 
positioning of the nozzle would have on adhesion. During training this data is 
potentially the most valuable piece of information available to an operator. 

4.5.4 Path of operation 
In order to achieve optimum conditions, the path followed while spraying plays an 
important role. Ideally, the nozzle should follow a path back and forth on the surface, 
gradually rising towards the ceiling. Failing to meet this condition can result in 
increased waste. This information is also recorded in the SOE and can be displayed as 
a string of thread, showing how the nozzle moved during the assignment. 

It should be noted that any or all of the tools described above can at any time be 
turned either on or off, depending on the conditions of the current training session. A 
beginner will likely make use of each of these tools to great extent. An experienced 
operator, in the other hand, might only sparingly use them to verify the result. 

Currently, the exact requirements and needs for the statistics and other feedback 
during the simulation have not been decided. This area is currently being discussed 
with experience operators and personnel to get a better view of what is useful and 
required by the software. 
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 Figure 18: Visualization of path tracking. 

4.6 Assignments 
To be able to use the simulator in educational programs the system now also supports 
the creation of assignments. An assignment can specify requirements that the current 
student need to fulfill and works much like an exam of sorts. These requirements are 
continuously evaluated during an assignment session and the system can record the 
result. Requirements can use all of the statistics from the simulation in its evaluation. 
It could for example specify that the minimum concrete thickness has to be within a 
certain threshold or that the wasted concrete can't rise above some fixed percent of the 
total amount used. 

Assignments are started from the main menu of the program. A student can choose 
from a number of assignments (perhaps included in a course). When an assignment 
has been chosen, the program loads the necessary information and evaluates the 
assignment in real time, while the operator performs the necessary steps. For example, 
an assignment can look like this: 

Requirement: 
- Achieve an adhesion ratio of at least 0.7 

Ending Condition: 
-Amount of concrete used is 10m3 

 This program loads the assignment and the student begins. When 10m3 of concrete 
has been used, the program notifies the user that the assignment is finished. If the 
adhesion ratio (waste / usage) is higher or equals to 0.7, the assignment is passed. 
Otherwise it is failed.  

4.7 Usability 
The virtual SOE camera operates from a first-person perspective. That is, the scene is 
rendered as if looking through the eyes of a virtual person. We call the virtual 
embodiment of the user the avatar. Similarly to the real world, the avatar can walk 



 

BeFo Report 111 

29 

around the virtual scene and look in different directions. The control device used to 
operate the robot can be used just like it would in a real scenario as it has a direct 
connection to the virtual robot. The avatar, on the other, hand is more difficult to 
control. There is no natural way to map the movement of the operator’s body to the 
movement of the avatar. This means that some other mean of controlling the avatar 
have to be implemented and it has to be easy enough not to hamper the learning 
experience. 

In games, a common solution to this problem is to let the user control the avatar’s 
movement using the keyboard and mouse. Forward, backwards and sideways motions 
are typically mapped to four buttons on the keyboard and the mouse is used to look 
around the environment. This control mapping was also the first that was 
implemented into SOE. As a relatively simple solution, it has the benefit of being 
widely used and accepted by people familiar with games. However, we cannot assume 
that the key demographic of SOE are particularly familiar with games or even 
computers in general. User tests with this solution have shown that this is indeed the 
case, and the test users were often unwilling to use this control scheme at all. 

A partial solution to this issue was to remove the necessity of looking around using 
the mouse, and only let the user worry about walking. This was achieved by 
implementing a camera tracking system that automatically targets the interesting parts 
of the shotcrete process. The interesting part, in this case, is defined to be the nozzle 
and the concrete’s hit position in the environment. As far as possible, the camera in 
this mode tries to automatically make sure that both the nozzle and the hit point is in 
frame. This control mechanism functions relatively well and users have been slightly 
more inclined to move around with this in place. 

 
 Figure 19: Automatic camera tracking keeps the nozzle(red) and hit 
 point(pink)in view if possible . 
Another mode of movement is to have fixed locations and viewing directions for the 
avatar. This will eliminate the problem of having the user move manually, but it will 
also impose severe restrictions. This method has been considered as a viable 
alternative but it has not yet been implemented. If an implementation was to take 
place, rigorous testing must be undertaken to determine suitable spots and viewing 
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angles which work under all circumstances. It might also increase the workload when 
constructing new environments if they require specific points the operator can act 
from as these will probably have to be created manually. 

A third solution is a “swap mode” for the robot control. In this case the user can swap 
between controlling the avatar and the robot with some button on the control device. 
Having eliminated the need for keyboard and mouse would be an improvement. This 
scheme would on the other hand require some getting used to. While implemented, 
user tests have not been performed using this technique. 

A solution suggested to us was to let the avatar be controlled in a similar way to that 
of popular mapping tools (such as Google Maps or Eniro Kartor). The user would 
then use the mouse to drag the camera, and click on points on the ground to move. 
This scheme has been implemented but it needs to be evaluated in user tests. 

4.8 Hardware and Software Requirements 
The SOE is built using modern computational and graphical approaches. As such, the 
hardware requirements of the program are relatively high, comparable to modern high 
end games. Mostly, the computational work load is put on the graphics side, meaning 
that above all, the computer that run it needs to be equipped with a powerful enough 
graphics card. CPU power is also important, but not to such high regard. The 
machines that have been used to develop SOE have had the following hardware 
characteristics. 

Processor: Intel Core 2 Quad, running at 2.66 GHz 
Graphics: NVIDIA GeForce GTX 275, 2668 MiB memory, 660 MHz 
Memory: 4096 MiB 
Hard Drive: 1 TB, 7200 RPM 
Operating system: Microsoft Windows 7 

Note that, in terms of hard drive space and memory, this specification should not be 
considered the minimum required setup. Hard drive requirements is likely not higher 
that 4 GiB and memory consumption not greater than 1GiB. As of yet, the minimum 
hardware specification required to run the program has not been thoroughly tested and 
is something that needs to be established in the future.  

All in all, the program runs effectively on a modern consumer grade PC. Currently, 
the SOE only supports Microsoft Windows as operating system. It is possible to port 
the program to other operating systems (such as Linux or Mac OS) but this would 
likely require a substantial amount of work. 

For stereoscopic rendering, a consumer grade graphics card will not work, however. A 
feature called quad buffering is required for this to work, and none of the major 
hardware vendors (NVIDIA and AMD) have this option on consumer grade products. 
This feature is only available on the Quadro series of graphic cards. During 
development, a NVIDIA Quadro 6000 was used test this feature. It’s comparable to a 
NVIDIA GeForce GTX 580 in computing power with the quad buffer extension being 
the only significant difference. 
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5 Future work 
SOE, as it stands today, is still in a very early state that would not be considered 
commercially acceptable. To get a viable product that can be sold to and used by 
customers there are more work that need to be done. This section will cover both 
some points that would probably need to be addressed before the software could be 
considered complete as well as some ideas for new features and improvements. 

5.1 Robots and Controls 
One of the main aspects of the simulation is the robots that the operator control. The 
models that are currently available in the simulation is, as noted above, base on the 
behavior of real robots, but not exactly the same. To increase the level of realism and 
real life usability of the product, contact should be made with robot manufacturers to 
look at the option of importing exact replicas of the real robots that are used in the 
field today. As the system is constructed with importing new models in mind this 
process should be fairly pain free if access to 3D models of real robots were available. 
These aspects are important as there are many different robot designs on the market as 
well as different designs on the controls that an operator can be expected to use in 
field work. 

5.2 Environments 
The tool chain to provide environments from point clouds is not a hundred percent 
automatic which would be preferable. The problem here is that noise in the points 
clouds can cause problems for many triangulation algorithms which might need 
manual work to fix. How good the result will be also depends a lot on what algorithm 
is used and the choice of algorithm in turn depends on what input is available, i.e. if 
there are just points in the set or if there are normals for the points as well. There are 
many algorithms to perform this kind of triangulation and more exploration of this 
field could possibly find a better fit for this application. 

5.3 Concrete parameters 
Concrete behavior is one of the pillars of the simulation software and it is important 
that this appears to be realistic. The current adhesion calculation model depends on 
very few parameters. Granted, these are the most important ones but there is still room 
for improvement. For example, most robot models allows the operator to control the 
concrete volume that the pump outputs. One can also control the air pressure in the 
nozzle as well as the accelerator dosage. All these variable can affect the optimal 
distance the nozzle should have from the surface, which in turn affect rebound. If 
these parameters could be modeled correctly to give an operator a good feel for when 
and how to use these controls that would provide additional value to the simulation.  

Other ideas on this topic is for the simulation to be able to calculate shear strength of 
the sprayed concrete and have drop-outs occur. Different concrete mixes behave 
differently and being able to experiment with different volumes of the ingredients and 
see how this affects the result of the spraying would be very useful. Being able to also 
model concrete compaction and compressive strength as well as other properties 
depending on the concrete mix and the operators spraying would exceptional. Worth 
noting here is that while some of the things here might be possible to accomplish, 
simulating different concrete mixes and the finished results realistically is most likely 
way beyond the scope of a real time simulation. 
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5.4 Education and User interface 
The simulator features a system that enables operators to take assignments and 
automatically get en evaluation of their result. This system still lacks capability to 
evaluate some aspects of the simulation which will need to be added. Other 
improvements to this system would for example to be able to set specific areas of the 
environment that should be part of the assignment evaluation. Also, the user interface 
and feedback from the system while running an assignment need improvement. 

Another important aspect here is to enable the operator to adjust all variables in the 
simulation that they are able to change in real life. A few examples of this is the speed 
of different joints on the robot, the air pressure at the nozzle, the concrete volume 
used per hour and accelerator dosage. All these should be adjustable with the control 
or through some other interface as they would be changed in real life on the specific 
robot model that is used at the moment. 
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6 Conclusion 
As described above, the result of this project is a functional software that let shotcrete 
operators perform shotcrete reinforcement in a virtual environment. User testing and 
positive feedback from other persons in the industry indicates that it would indeed be 
a useful tool in the education of shotcrete operators. Even though it might not replace 
real practice entirely, it is a great improvement as it allows operators to become 
familiar with the equipment and concrete behavior before being placed in a real 
situation. The more mistakes an operator makes, the more expensive the work 
becomes. Using this software, many of the mistakes made by entirely new operators 
can be avoided or reduced and a lot of money can be saved during their education. 
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