Preface

Groundwater-related problems are common in rock engineering. Rock tunnels, rock slopes and dams built on rock are typical constructions that are exposed to the adverse effects of water flow and changes in water pressure, both during excavation and in the subsequent operation of the facilities.

When tunnelling below the groundwater table in Scandinavia, grouting is frequently used to seal rock mass fractures and thus reduce water influx and its impact on the surrounding environment. Reduced water influx also has a beneficial effect on tunnel construction. Grouting of dam foundations built on rock prevents excess leakage through rock fractures under the dam.

Grouting is a multidisciplinary engineering science that covers several fields, including geology, geohydrology, material science, rheology and production technology. Theories and mechanisms behind grout spread in rock fractures have been developed in Sweden by researchers at the Royal Institute of Technology and Chalmers University of Technology under the leadership of Professor Håkan Stille and Professor Gunnar Gustafson. Research has been based mainly on a programme run jointly by industry and the two universities with support from BeFo, the Rock Engineering Research Foundation. To date, it has resulted in some 50 papers in peer-reviewed international journals and 16 PhD theses.

This book describes the theoretical background to cement-based grouting of fractures in rock using grouting technology that has emerged from academic research conducted in Sweden since the 1980s. It is our hope that this summary of the theories that have been developed in recent decades will provide the international geotechnical community with a better understanding of the basis for rock grouting and the parameters that control the spread of grout in rock fractures. This book will be of considerable value to students at undergraduate and master's level as well as researchers.

Many people, especially PhD students, have contributed over the years to the underlying research and development and we extend a collective 'thank you' to all of them. We would like to mention in particular our colleague Professor Gunnar Gustafson, who as an extraordinary researcher added greatly to knowledge in this field but is sadly no longer with us. We would also like to thank Dr Lars Hässler, Dr Magnus Eriksson and Dr Mats Holmberg for their critical reviews and valuable comments. Special thanks to Mr Shinji Kobayashi and Mr Masakuni Tsuji from the Shimizu Corporation in Japan, and Mr Björn Stille, all of whom played a very active part in the practical application of the theories that have evolved.

Stockholm, September 2015

Håkan Stille

Professor Emeritus, Royal Institute of Technology

Per Tengborg Research Director, BeFo, Rock Engineering Research Foundation

Table of content

1.Groundwater-related problems in rock engineering	9
1.1 Introduction	10
1.2 Aim	11
1.3 Water ingress into tunnels	11
1.4 Water flow under dams	13
1.5 Conclusion	15
2.Basic facts about groundwater flow	17
2.1 Introduction	18
2.2 Water flow in channels, pipes and discs	18
Channels Pipes	18 18
Discs	19
2.3 Continuum fluid mechanics	19
Discharge from wells	20
2.4 Water flow in heterogeneous media	21
Effective hydraulic conductivity	21
2.5 Water flow and rock engineering	22
problems Ungrouted tunnels	22
Grouted tunnels	22
Dams	23
2.6 Conclusion	23
3.Groundwater flow in fractured	
rock masses	25
3.1 Introduction	26
3.2 Flow in fractures	26
Laminar flow	27
3.3 System of fractures	28
3.3.1 Continuum approach Layer transmissivity	28 28
Scale effect	28 30
3.3.2 Approach based on fracture transmissivities	33
Section transmissvity as sum of fracture transmissivities	34

Calculation of fracture transmissivities from section transmissivities	34
3.4 Groundwater flow in grouted fractured rock	37
3.4.1 Independent fracture approach	38
3.4.2 Section transmissivity approach	38
Distribution of section transmissivities of grouted rock	38
Calculation of section transmissivity	39
3.5 Conclusion	41
4.Hydrogeological investigations	43
4.1 Planning of investigations	44
4.2 Testing methods	44
Testing section transmissivity	44
Testing fracture tranmissvity 4.3 Conclusion	47 47
4.3 Conclusion	47
5.Basic facts about grout spread	49
5.1 General assumptions	50
5.2 Basic equations for grout spread at	
constant pressure	50
5.3 Solution of the basic equations	51
Time as function of grout front position Grout front position as a function of time	51 53
Other solutions	53 54
5.4 Solution of grouted volume and grout	
flow at constant pressure in a borehole	55
5.5 Solution of grout spread in line with	
pressure variation in a borehole	56
5.6 Examples	57
5.7 Verification	59
5.8 Conclusion	60
6.Hydraulic jacking of rock masses	
due to grouting	61
6.1 Introduction	62
	02

6.2 Grouting pressure less than the initial	
stresses	63
6.3 Elastic jacking	63
6.4 Ultimate jacking	67
6.5 Conclusion	67
7. Special considerations and	
phenomena related to grouting	69
7.1 Introduction	70
7.2 Fingering	70
Fingering in grouted fractures	70
Fingering in boreholes	71
7.3 Internal erosion	71
Grouting in flowing water	71
Internal erosion of fresh grout after completion Erosion of fracture filling	73 73
7.4 Surface leakage	73
7.5 Flow into other boreholes	74
7.6 Conclusion	74
	14
8.Basic facts about the properties	
of cement-based grout	77
8.1 Cement-based grout	78
8.2 Rheology	79
8.3 Penetrability	82
8.4 Separation	83
8.5 Conclusion	85
	00
9.Grouting design based on	
presented theories	87
9.1 Introduction	88
9.2 Design strategy	88
9.3 Conceptual model for grouting processes	89
Part A: Concepts related to the water-bearing	
structure of a rock mass.	90
Part B: Concepts related to grout spread	90

	Part C: Concepts related to grouting performance and	00
63	control 9.4 Preliminary design and predictions	90 90
63	9.4.1 Introduction	90 90
67	9.4.2 Hydro geological considerations	90 91
67	Hydro geological domains	91
	Permissible hydraulic conductivity of the grouted zone	92
9	Degree of difficulty in grouting	92
	9.4.3 Grout mix design	92
' 0	9.4.4 Grouting design	93
70	Grouting pressure	93
70 71	Stop Criterion Special Accounts	93 94
71	Time and quantities	94
71	9.5 Final design with Real Time Grouting	
73	Control (RTGC)	95
73	9.5.1 Introduction	95
/3	9.5.2 Real Time Grouting Control Method	96
74	Time correction	97
74	Dimensionality of the grout flow Not normal flow courses	97 97
	Aperture of the largest grouted fracture	97 97
7	Grout spread	98
7	Calculation of acceptable grout spread	99
78	9.6 Investigation and quality control	99
79	9.7 Conclusion	100
32		
33	10.Application and case histories	103
35	10.1 Introduction	104
	10.2 Northern Link Highway tunnels	105
7	10.2.1 Introduction	105
-	10.2.2 Design conditions	105
88	Hydrogeology and geology	105
88	Grout mix Grouting fan	106 106
39	Grouting pressure	106
90	Stop Criteria	106
90 90	10.2.3 Application of the grouting theories	107

General	107
Dimensionality	107
Prediction of grout flow	109
Jacking	109
10.2.4 Conclusion from the Northern Link tunnels	111
10.3 City Link Railway Tunnels	112
10.3.1 Introduction	112
10.3.2 Design conditions	113
Hydrogeology and geology	113
Grout mix	113
Grouting fan	113
Grouting pressure	113
Stop Criteria	114
10.3.3 Results from pregrouting	114
Basic input for RTGC analysis	114
Ingress of water after grouting	114
10.3.4 Grouting effect and sealing efficiency	115
Grout spread in the minimum and maximum	
fracture aperture	115
Grout flow dimensionality	117
Grouting process	119
10.3.5 Hypothetical application of RTGC relative	
to stop criteria	119
10.3.6 Conclusion from the grouting trial for the	
City Line project	120

10.4 THXP dam project in Laos	121
10.4.1 Introduction	121
10.4.2 Design consideration	121
Hydrogeology and geology	121
Grout mix	121
Grouting fan	122
Stop criteria	122
10.4.3 Results	122
Flow without jacking	122
Grout flow with jacking	124
10.4.4 Conclusion	128
10.5 Gotvand Dam Project in Iran	128
10.5.1 Introduction	128
10.5.2 Design consideration	128
Hydrogeology and geology	128
Material properties and stop criteria	129
10.5.3 Analysed grout holes	129
Grout flow without jacking	129
Grout flow with jacking	131
10.5.4 Conclusion from the grouting at Gotvand dam	132
10.6 Conclusion	133
11.References 1	35
References	136