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PREFACE  

This report presents a generalized and automated tool for big amount of MWD data 
filtering and normalization, and an idea of applying artificial intelligence (AI) on MWD 
data for predicting bedrock quality conditions and designing appropriate grouting 
systems. 

Reference group members who provided valuable comments and suggestions was 
composed of Patrik Vidstrand, Johan Funehag, Mahmoud Yazadani, Thomas Dalmalm, 
Karl-Johan Loorents, Johan Spross, Almir Draganovic, Catrin Edelbro and Jeroen van 
Eldert. The project was funded by BeFo and Tyréns.  
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FÖRORD 

Denna rapport presenterar ett generaliserat och automatiserat verktyg för datafiltrering 
och normalisering av stora mängder MWD data, samt presenterar en idé om att tillämpa 
artificiell intelligens (AI) på MWD-data för att förutsäga berggrundskvalitetsförhållanden 
och stödja injekteringsdesign. 

Referensgruppsmedlemmar som gav värdefulla kommentarer och förslag bestod av Patrik 
Vidstrand, Johan Funehag, Mahmoud Yazadani, Thomas Dalmalm, Karl-Johan Loorents, 
Johan Spross, Almir Draganovic, Catrin Edelbro och Jeroen van Eldert. Projektet 
finansierades av BeFo och Tyréns. 

Stockholm 

Patrik Vidstrand 
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SUMMARY  

Continuous forecasting of the ground conditions ahead of the tunnel face during 
construction projects like tunneling is of great interest. Nowadays, in tunneling projects, 
analyzing the acquired measurement-while-drilling (MWD) data has been demonstrated 
to be a helpful method for assessing the rock mass conditions. However, the MWD is a 
monitoring technique that provides significant large records and analysis of a large 
amount of generated data not only is time-consuming.  

The purpose of this work is to provide a generalized and automated tool for large amounts 
of MWD data filtering and normalization in order to help in more appropriate grouting 
design systems, at the mean time to investigate the possibilities of applying artificial 
intelligence (AI) on MWD data for predicting bedrock quality conditions and designing 
appropriate grouting systems. One test dataset containing MWD, real-time grouting data, 
and field protocols from Stockholm Bypass project was investigated and analyzed within 
this project. An automated process for filtering and normalizing MWD data using a 
combination of Mode and Percentile gate bands was developed for efficient removal of 
the noisy data caused by rig components, i.e. collaring and coupling effects from rod 
extensions. The presented approach in the form of single hole and peer group-based 
methods were developed compared, and automated to evaluate the applicability of the 
normalizing methods in removing the hole depth dependencies of MWD data.  

It is concluded that the hole-based normalization method can more accurately remove the 
hole depth dependencies and stepwise problems in MWD data. A relational PostgreSQL 
database for storing the MWD and real-time grouting data was built to provide  cost-
effective and efficient tools for data extraction. This tool automatically can transfer raw 
MWD and grouting data to the database. The entire process from reading the data, 
filtering, normalizing, and then building the data center was automated using the Python 
programming platform. For future research, an idea for the use of AI by utilizing the 
MWD and grouting data was proposed. As summary, this idea aims to combine different 
types of data for predictions of the success of the grouting design. The presented 
automated MWD data processing and unified database building in combination with the 
realization of the idea of using AI in MWD data analysis is considered to be a very 
valuable daily tool for people involved in their decision-making process. 

Keywords: Big data, Measurement while drilling (MWD), normalizing index, filtering 
process   
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SAMMANFATTNING  

I byggprojekt innehållande tunneldrivning är kontinuerlig undersökning och prognos av 
markförhållandena framför tunnel drivningsfronten är av stort intresse. Numera har 
analys av MWD data i tunnelprojekt visat sig vara en hjälpsam metod för att bedöma 
bergmassans förhållanden. MWD är en övervakningsteknik som analyserar stora 
mängder data, vilket för närvarande är mycket tidskrävande utan för närvarande och som 
dessutom inte används fullt ut i det dagliga arbetet.  

Syftet med detta arbete är att tillhandahålla ett generaliserat och automatiserat verktyg för 
filtrering och normalisering av stora mängder MWD data, samtidigt som man undersöker 
möjligheterna att tillämpa artificiell intelligens (AI) på MWD data för att förutsäga 
bergkvalitetsförhållanden och utforma lämpliga injekteringsdesign.  

En testdatauppsättning innehållande MWD data, realtidsdata för injektering och 
fältprotokoll från projekt Förbifart Stockholm har undersökts och analyseradts inom 
ramen för detta projekt. En automatiserad process för filtrering och normalisering av 
MWD-data med hjälp av en kombination av mode och percentil filter utvecklades för 
effektiv borttagning av icke relevant data orsakad av borrutrustning, dvs. effekter av 
kragning och koppling från stångförlängningar. De presenterade metoderna för så kallad 
enskild-hålbaserad och grupp-hålbaserad utvecklades, jämfördes och automatiserades för 
att utvärdera användbarheten hos normaliseringsmetoderna samt för att ta bort 
håldjupberoenden hos MWD data. 

Slutsatsen är att den enskild hålbaserad metoden kan mer noggrant ta bort 
håldjupberoenden och stegvisa problem i MWD data. En relationell PostgreSQL-databas 
för lagring av MWD och realtidsinjektering data byggdes upp för att tillhandahålla 
kostnadseffektiva och effektiva verktyg för datautvinning. Detta verktyg kan automatiskt 
överföra rå MWD och injekteringsdata till databasen. Hela processen från att läsa data, 
filtrera, normalisera och sedan bygga upp databasen automatiserades med hjälp av 
programmeringsplattformen Python. För framtida forskning föreslogs en idé om att 
använda AI genom att utnyttja MWD och injekteringsdata. Sammanfattningsvis syftar 
denna idé till att kombinera olika typer av data för att förutsäga framgången för 
injekteringsdesignen. Den presenterade automatiserade bearbetningen av MWD data och 
uppbyggnaden av en enhetlig databas i kombination med förverkligandet av idén att 
använda AI i MWD-dataanalyser anses vara ett mycket värdefullt dagligt verktyg för 
personer som är involverade i deras beslutsprocess. 

Nyckelord: Big data, Measurement while drilling, normalisering och filtrering 
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1. INTRODUCTION 

Measurement while drilling (MWD) is a monitoring technology (Gearhart et al., 1986), 
that can provide valuable technical information on the penetrated rock mass, for rock 
engineering projects i.e. excavations and stability assessments, characterization of 
geology (e.g. lithology, porosity and permeability), fluid content and physical properties 
of the rocks being drilled. (Schunnesson, 1996 and 1998). This implies the ability of 
MWD records in providing more efficient design and making decisions based on real-
time data in direct response to measured changes in the rock mass. 

Technologically, the immediacy and relative cheapness of data acquisition using the 
available sensors on the drilling rig, are the attractiveness of MWD system. In any MWD 
system the monitored drill parameters are either stored on-board or directly transferred to 
a storage device for further processing. Depending on the type of drilling, different 
parameters are monitored. In the case assessed in this report a face drill rig equipped with 
top hammer rock drills are used, where the monitored parameters are thrust, feed pressure, 
percussion pressure, rotation speed, penetration rate, rotation pressure, flushing pressure, 
flushing flow, drilling depth and time are measured (Schunnesson, 1998).  

Currently, MWD data monitoring are required and successfully organized in many 
infrastructure projects in several countries like Sweden (Martinsson and Bengtsson, 2010; 
van Eldert et al., 2020; Isheyskiy and Sanchidrian, 2020), USA (Rostami et al., 2015), 
Norway (Nilsen, 2015; Hansen et al., 2022), Spain (Navarro et al., 2018), Canada 
(Khorzoughi et al., 2018; Khorzougi and Hall, 2016), and Russia (Isheyskiy et al., 2021). 
More information about the industrial companies with significant contributions in 
development and interpreting the MWD data can be found in Appendix A.  

The MWD data is a typical representation of complex big data in geoengineering 
applications. Moreover big data analysis in geo-modelling problems has just started in 
the geoengineering field (Zhang et al.,2021).Therefore, conducting a unified MWD 
database in this study technically dedicates an essential tool for future research: 

• a structured framework for data integrity to reduce redundancy, 
• deeper insights and more physical meaningful interpretation on the retrieved 

information,  
• improving data management, i.e. a centralized location with accessible share 

space during research stages,   
• providing a consistent and cost-effective data analysis platform for auditing and 

optimization across an entire process using data mining and artificial intelligence 
approaches to get more detailed information on subsurface conditions.  
 

As a result, the unified database facilitates collaborations between engineers with 
different roles in projects for better communication and promoting more efficient 
workflows (e.g. Tsatalos and Ioannidis, 1994; Zhussupbekov et al., 2021; Ishaq et al., 
2023). Such analysis will then greatly help the geoengineers to identify patterns and 
trends, data anomalies and thus error elimination to get more informed decision-making 



2 
 

BeFo Report 242 
 

and operational improvement (Isheyskiy and Sanchidrian, 2020;  van Eldert et al., 2021a; 
van Eldert, et al., 2021b).  

The gathered MWD data falls within the big data category. Accordingly, the noise in such 
metadata need to be appropriate removed (filtering), the data need to be scaled for 
consistent interpretation (normalizing) and then centralized in storing location (unified 
database).  This means that the data can then be retrieved quickly for various analyses. 
Therefore, technically development of an automated procedure covering the filtering, 
normalizing and the creation of an integrated unified meta database is highly motivated 
in geoengineering applications. Such processing paradigm is greatly beneficial because: 

• ensures for consistency in MWD data analysis via a standardized and 
understandable format by the various professions,  

• improving the accuracy of the MWD data by eliminating errors or biases that may 
be introduced by the rig monitoring systems or the drilling environment,  

• gaining new insights into the drilling process. 
 

Based on the motivations, a further developed  automated filtering and normalization 
approach based on van Eldert et al. (2020)  for MWD data is presented using the mode 
and percentile filters and linear regression normalizing techniques. As an illustration for 
practical use, the capacity of the suggested procedure was examined by data processing 
on acquired data from two rigs from different drilling environment from infrastructure 
project Stockholm Bypass in Stockholm, Sweden.    
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2. BRIEF REVIEW OF MWD DATA PROCESSING TECHNIQUES 

As referenced by Smith (2002), the use of MWD as a drill monitoring technique in 
different geoengineering applications has been well recognized since the 1970s. 
Standardization of data formats (Saunders et al., 1996), data integration (Ziegler and 
Dittrich, 2007), data cleansing (Wu, 2013), metadata management (Chapman et al., 
2009), cloud-based solutions (Alreshidi et al., 2018), and application programming 
interfaces (APIs) (Imieliński et al., 1999) are the most common used techniques for 
processing and managing a centralized MWD database in geoengineering. The 
International Real-time Data Exchange Standard (IREDES) can facilitate the real-time 
exchange of drilling data between different systems ensuring interoperability and 
seamless communication (Cayeux  et al., 2019). However, relying solely on a single 
standard, such as IREDES may limit flexibility in choosing the best technologies and data 
exchange methods for specific drilling projects (Geekiyanage et al., 2021). These 
methods, overall aim to define a consistent form of MWD data processing that can be 
integrated and shared across different systems and platforms. Figure 1 shows the 
increasing trend of the geoengineering application of MWD data in recent years.   

 

Figure 1. Increasing trend of using MWD data in geoengineering applications in the last 
five decades (after Isheyskiy and Sanchidrian, 2020)  

Despite the fact that the awareness has increased significantly, development of accurate 
processing of these types of recorded data is still needed The data process contains 
different types of recorded data that can be categorized as independent (e.g. feed force, 
rotation speed and air pressure) which are directly controlled and influenced by the rig 
control system and the operator and then the dependent (e.g. penetration rate, rotation 
torque, vibration) that represent the mechanical responses altered by the geological and 
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mechanical properties of the rock (e.g. Brown and Barr, 1978; Peck, 1989; Schunnesson 
and Kristoffersson, 2011). 

2.1 Filtration techniques 

Since the MWD data is typically acquired by embedded sensors installed directly on the 
drill rig and can provide information about the conditions at the drill bit, the presence of 
signals recorded due to various factors, like the drilling environment/ condition, tool 
wear, and signal interference is significant and cannot be neglected (Navarro 2018; 
Charoenprasit et al., 2018; Geekiyanage et al., 2021) These factors can not only make it 
challenging to extract accurate and reliable information from the MWD data but can also 
introduce operator caused influence on the data. Therefore, filtering of MWD data is a 
critical task because it fundamentally helps to 1) remove data that is not rock mass 
dependent, 2) identify potential issues and abnormalities in the drilling process (e.g. tool 
wear, wellbore instability, drilling-induced vibrations), 3) improve the signal-to-noise 
ratio to provide higher resolution to detect and interpret trends and patterns in the data. 
Subsequently, filtration assists in extracting more useful information from data influenced 
by varying rock mass conditions, control systems and operators to improve the accuracy 
of the analyses of the results.  

Mathematically, the MWD data can be filtered using different techniques such as 
bandpass (Zhao et al., 2009), moving average (Geekiyanage et al., 2021), Kalman (Yang 
et al., 2020), and wavelet (Arabjamaloei et al., 2011). However, the choice of filtering 
technique has a close dependency on the geological conditions and the specific drilling 
operation for the MWD data (Zhao et al., 2023). Therefore, in the first step, a careful 
evaluation of the filtering methods and their impact on the data should be executed.  

2.2 Normalizing techniques 

Normalizing is used to adjust or scale the datasets to a standard or reference condition to 
eliminate the effects of variations in drilling circumstances, measurement equipment, and 
other factors that can affect the data. Since the MWD parameters have different units of 
measurement, the normalization aims to obtain comparable scales of criteria values. The 
MWD data can be normalized using different methods via various parameters like depth 
normalizing (e.g. Navarro et al., 2018; van Eldert et al., 2020), time normalizing (e.g. 
Eren and Ozbayoglu, 2010; Abdelaal et al., 2022.; Leung and Scheding, 2015), lithology 
normalizing (Deng et al., 2022), mud weight normalizing (Aljubran et al., 2021), tool 
normalizing (e.g. Ertunc et al., 2001; Rodgers et al., 2020), environmental normalizing 
(e.g. Purkayastha and Nair, 2017; van Eldert et al., 2020; Isheyskiy and Sanchidrian, 
2020), and statistical normalizing (e.g. Basarir et al., 2017; Ghosh et al., 2014). There is 
thus available normalization techniques for the parameters that are registered. In this 
study, an  improved normalization method was developed based on the linear regression 
method used in von Eldert et al. (2020).  
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3. DATASET 

In this project, MWD data from one part of Stockholm Bypass project close to Lunda 
entitled FSE410 were analyzed. The acquired datasets from the MWD at FSE410 also 
include the real time grouting supplemented by implemented protocols i.e. drilling plans 
and water flow measurements. These supplementary datasets can further be used to 
investigate the potential development of modern artificial intelligent (AI)-based modeling 
approaches for detailed analyses of the MWD parameters and grouting design. A 
proposed development is presented and discussed in more detail in Section 8.   

The employed MWD datasets and their units follow a matrix from. The columns show 
the measured parameters including hole depth (HD, mm), penetration rate (PR, dm/min), 
percussive pressure (HP, bar), feed pressure (FP, bar), damping pressure (DP, bar), 
rotation speed (RS, r/min), rotation pressure (RP, bar), water flow (WF, l/min) and water 
pressure (WP, bar) and the time of operation (hh:mm:ss) and the rows present the 
corresponding measured values of each recorded interval. 
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4. APPLIED METHODOLOGY  

4.1 Filtering procedure 

In this work the presented flow diagram in Figure 2 was followed. The procedure includes 
several inner nested loops and mimic an automated process for MWD data processing, 
where the input data are automatically filtered and normalized and then  transferred to the 
centralized space to store and create an unified database. Block A shows the process to 
adopt the multi-filtration procedure while Block B expresses the implemented framework 
for the normalization step. The process was designed in such a way that it covers both 
hole and peer group-based analyses. In the hole-based procedure, the single MWD data 
(single hole) is fed, while the peer group is referred to a set of MWD records that are 
grouped based on analytically relevant criterion (criteria). In the case of MWD data, these 
criteria are the diameter and hole depth that are related to the rod length. Furthermore, the 
created database was developed so it can be updated by several possibilities like adding 
the raw data and utilities for the user in retrieve and extract appropriate information. This 
process was entirely coded in Python.  

 

Figure 2. Simplified diagram of applied automated MWD processing procedure and 
generating unified database  
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Based on block A (Figure 2), at the first step, the rod length using the raw data was 
analyzed to ensure the dissimilarities (Figure 3). The results showed different lengths in 
drilling sequences (e.g. ≈5 m at the first sequence and then ≈ 3 m long in further steps). 
This issue means that the drill rod length should be dealt with as a variable instead of a 
constant during the filtration process (peer group criterion). 

Figure 3. A sample plot of the raw MWD data to check the rod length in different 
drilling sequences 

As presented in Figure 2, a dynamic multi gated band filtering procedure was applied. 
Through this process, the most appropriate combination of MWD parameters i.e. PR, HP, 
DP, HP-FP, DP-HP, HP-DP-FP, and etc. are identified to split the entire of data into 
different gated bands based on the mode and long term average statistics. The designed 
bands then are supplemented by percentile filter. In the current project the combination 
of HP-PR showed the most optimum results and thus selected as the MWD parameters to 
define the gated band and percentile filters. The gated bands were applied on HP and the 
percentile was applied on PR to remove the outliers. It should be noted that the filtering 
procedure simultaneously is applied on the other MWD parameters, i.e. removing one 
data from HP means eliminating the entire row of data for all parameters. Referring to 
the definition of mode filter, the gated bands can be used to split the data into three modes, 
including high/change/low modes (Figures 4 and 5). The filter band for high mode values 
i.e. the ‘High pressure mode’ data (purple dots in Figures 4 and 5) was designed as a
combination of mode and average to cover the max of HP. Therefore, in this condition
the gated band was designed as an interval around max HP value and programmed in
terms of [max HP-15, max HP]. This band was obtained from merged HP data (peer
group analysis) of drilled holes.
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To capture the low mode i.e. ‘Low pressure’ data (red dots in Figures 4 and 5), the gated 
band in terms of [mode value-5, mode value+5] was designed and implemented. 
Accordingly, the rest of data falls outside of the upper/lower gated bands were then 
classified as ‘Change mode’ (black dots in Figures 4 and 5) and were considered as noisy 
data from machine operations e.g. coupling and collaring and the dependency on the rod 
length for each sequence of drilling is excluded in further analysis (van Eldert et al., 
2020).  In the current project the given recommendation by van Eldert et al., 2020 
(removing a value of 0.5 m from both sides of each rod) was not applicable due to 
variation of the rod length in drilling sequences. Accordingly, in the peer group analysis 
after merging the split data i.e. High/Low-pressure values, a Percentile filter was applied 
to remove noise or outliers. In this work, only lower noisy PR data were removed. The 
high values were sustained for further analysis to avoid removing important data points 
collected from poor quality rock mass.  

Like any measurement system, MWD tools are not perfect and may have inherent 
measurement errors. Therefore, identify and handling outliers in MWD data is crucial for 
maintaining the accuracy of drilling operations and making informed decisions. In the 
current project some of the outliers i.e. data points that deviate significantly from the 
overall pattern or trend of the dataset, in MWD data after filtering and normalizing are 
still remained. Possible causes for outliers in MWD data:  

• Tool wear: During the drilling sequences, the tools undergo wear and thus 
degrading. Consequently the sensors may provide less accurate records, leading 
to outliers in the data. This implies to consider the tool reliability through 
combination of new designs, maintenance procedures and operating practices 
(Martin et al., 1994).  

• Formation heterogeneity: The subsurface variability, i.e. changes in rock 
formations, presence of fractures, and etc., can result unexpected records of MWD 
parameters, causing outliers in the data (Fernández et al., 2023) and should be 
kept during filtration process. 

• Tool interactions and drilling dynamics: since the drilling rig consists of different 
tools, they can interact with each other in complex ways( drill string, bit, and the 
subsurface) and thus introduce noise or anomalies in the MWD parameters 
leading to outliers (Reckmann et al., 2010). 

• Drilling Depth: Understanding the potential impact of drilling depth on MWD 
data is essential for interpreting the measurements accurately. The increase in 
hydrostatic pressure with drilling depth can affect the performance of downhole 
sensors and therefore may impact the accuracy of measurements, potentially 
resulting in outliers (Ertunc et al., 2001; Rodgers et al., 2020). On the other hand, 
the problem of vibration and shock also should be considered. Deeper drilling 
often involves more challenging subsurface conditions, including harder rocks. 
Increased vibration and shock loads on the drilling tools can influence the 
reliability of sensors and leading to monitoring the outliers (Song et al., 2022). 
These signals should be adjusted and normalized before further analysis. 
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• Data transmission challenges: Since the MWD data is often transmitted in real-
time from downhole sensors to the surface, errors or signal interference can lead
to corrupted data, resulting in outliers. Data transition from greater depths also
poses additional challenges, i.e. the longer drill strings cause more signal
attenuation and data transmission delays, or potential signal loss, that contributes
to outliers in the received data. Furthermore, the influence of operational-worker
errors in recording also should be considered (van Eldert et al, 2020).

As a result of peer group analysis, a visualized filtering result from one fan in terms of 
rod length is presented in Figure 6, i.e. the split data from ’rod 1’ into High/Low pressure 
modes for the depth interval of 0-6 m. 

Figure 4. A visualized sample of carried out efforts for hole-based data filtering. Black 
dots represent Change mode, purple dots represent High pressure mode and red dots 

represent Low pressure mode. 
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Figure 5. Visualized results of filtering procedure based on gated bands and modes of 
the MWD data in accordance to HP  

 

Figure 6. Rod length checking through splitting of merged data for all rods from one 
umbrella (Checking the mode capability in splitting the high (orange) and low (dark blue) 
pressure values for rod 1) 

4.2 Normalizing process 

The normalization process in MWD data aims to adjust and scale the data to a consistent 
reference or baseline. This process is used to remove variations in the data caused by 
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differences in rig type, drilling setups in the machines and other factors, allowing for more 
accurate analysis and interpretation of the data. Accuracy improvement, providing 
comparable conditions, sensitivity analysis and more visualized insights are some of the 
potential benefits of normalizing MWD data, because: 

• Normalization after filtering can assist in removing signals caused by systematic 
drilling behaviors that may affect the accuracy of the data. 

• As it aims to scale the data, then easier comparison among different datasets 
particularly data from different rigs/drilling conditions is allowed. 

• It can highlight smaller changes that may be masked by larger variations in the 
data. 

• Adjusted/scaled data can improve the visual clarity of the data, making it easier 
to identify trends and patterns. 
 

To execute the depth-normalization, Block B in Figure 2 in the case of both hole and peer 
group data was followed. The summary of applied procedure in the form of pseudo-code 
can be found in Appendix B.   

The result of hole and peer group-based depth-normalization (single hole and fan holes) 
in terms of raw data (black dots), normalized data after removing the hole depth 
dependency (green dots) and adopted regressions for each rod length (red lines) are 
presented in Figures 7 and 8. The adopted regressions based on peer group data (Figure 
8) were conducted for each parameter from all rods with respect to High/Low modes 
(Figure 6), i.e. two different regression models for ‘rod 1’.  Referring to Figures 7 and 8, 
both hole and peer group-based results showed the stepwise problem (energy losses in 
the couplings for the rod extension) in Feed pressure and Damper pressure at depth ≥ 15 
m, where the hole-based normalizing can provide more effective stepwise removal than 
peer group analysis. However, the low correlation of Rotation pressure (Figure 7) 
prevented appropriate depth-normalizing, and thereby, the stepwise problem for depth ≥ 
15 m is not treated like Feed pressure and Damper pressure. An overview of the compared 
methods, i.e. hole/peer group-based depth-normalization is shown in Figure 9 that 
indicates the improper stepwise removal through peer group analysis in Rotation speed 
around 20 m. Such heterogeneity mechanically can be assigned to the drilled rock mass 
characteristics which induced uncertainties in the records where the peer group considers 
all of the holes instead of single data in the hole-based approach. Both the single hole and 
fan based normalization processes were done in a similar way for all holes from all 
different sites to make it possible to compare different site conditions.   
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Figure 2. Pattern identification and trend analysis between the normalized and un-
normalized MWD data (hole-based). Raw data (black dots), normalized data after 

removing the hole depth dependency (green dots) and adopted regressions for each rod 
length (red lines). 

 

Figure 8. A visualize sample of pattern identification-trend analysis between the 
normalized and un-normalized MWD data (peer group-based). Raw data (black dots), 
normalized data after removing the hole depth dependency (green dots) and adopted 

regressions for each rod length (red lines). 
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Figure 9. Comparison of two normalization methods for hole depth dependency 
removing. Raw data (black dots), normalized data after removing the hole depth 
dependency (green dots) and adopted regressions for each rod length (red lines). 
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5. DATABASE DESCRIPTION 

At the final step, a centralized database was designed using PostgreSQL platform because 
of its robustness and open source object-relational database system. Then, the raw and 
processed data were transferred into this datacenter. Due to the developed automated 
coding it can continuously be updated using new upcoming data. Currently, it includes 
two types of data, the MWD (7252 files, 7252 boreholes, 60110094 data) and real time 
grouting (1583 files, 39766 boreholes, 6814391 data) for the project FSE410. A 
significant advantage of this database is that it can facilitate further developing through 
modern computational approaches like AI. Figure 10 shows the overview of the designed 
database that contains 6 relational tables and the connections between the tables are based 
on the settings of primary and foreign keys. The primary and foreign key relationships are 
used in relational databases to define many-to-one relationships between tables. The ‘
’ corresponds to the table name. The ‘ID’ is the identifier index linked to the original 
‘Raw File’. For example, the ID in ‘Data Type’ shows the type of data, i.e. ‘MWD’ or 
‘Grouting’ which can be selected in ‘Column Name’. The table of ‘Raw File’ dedicates 
the information on name, folder, project and type of the original uploaded files using ‘File 
ID’, ‘File Name’, ‘Folder Name’, ‘Project Name’, and ‘Data Type ID’. The tables of 
‘MWD_header’ and ‘Grouting_header’ store the information of the header of each data 
type that is linked to the corresponding file in the table of ‘Raw File’ via ‘File ID’. 
Accordingly, columns T1-T9 are the three-dimensional rotation matrix of the drill wreath 
for control the spatial direction and columns T10-T12 denote the absolute coordinates of 

the starting point of the borehole. The (‘ ’) shows the unique identity of each row in 

that table while (‘ ’) represents a set of attributes in a table that refers to the (‘ ’) of 
another table. These two keys connect the six tables together and enable users to extract 
data efficiently from different tables at the same time. Such utilities provide efficient 
choices to extract both MWD and grouting data through different query conditions and 
specific field ID values.  
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Figure 30. Schema for the PostgreSQL database design 



17 
 

BeFo Report 242 
 

6. DISCUSSION 

In the current project, the filtering and normalizing process were only applied on MWD 
data. The original real time grouting data are stored directly in the database. The executed 
normalizing after filtering helped to remove some changes caused by differences in rod 
length, tool geometry, drilling setups in the machines etc. As recommended by Navarro 
et al., (2018), checking the combination of MWD parameters is preferred to sustain the 
important data points during the process. This is recommended to be investigated in the 
future. According to the categorized data state conditions (high/low/change mode) based 
on combined PR-HP, the efficiency of the proposed process in noise removal from the 
recorded data, i.e. improving the signal-to-noise ratio was approved. However, referring 
to Navarro et al. (2018), some of the data that fall within the identified Change mode may 
consist of information of the poor-quality rock that is needed for further investigation 
using other combined parameters. As an example, the combination of RS, WP and WF 
may show the variations of the rock mass (Schunnesson et al, 2011 and Navarro et al., 
2018). From sensitivity analysis point of view, integrating of the normalized MWD data 
with other geotechnical information, i.e. rock mass characteristics and geological 
mapping can assist to recognize the most relevant parameters in MWD datasets and reflect 
changes in these properties in the MWD data. Therefore, deeper analysis of normalized 
MWD data can reveal more insights into the anomalies and trends in the formation that 
may be of interest for drilling (e.g. changes in lithology, porosity, or permeability). This 
is an important key for geoengineers, where the better understanding of the physical 
properties and characteristics of the formation being drilled the more accurately 
interpretation of the normalized MWD data.  

The designed database, due to embedded possibilities, dedicates a centralized location 
with the ability for continuously updating. The provided facilities also show a modern but 
time/cost-effective tool for big data management and more detailed operational and 
research analyses. 
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7. CONCLUSIONS 

In the current project, an entire automated process for filtering, normalizing and database 
creation for big MWD data in both hole and peer group-based was developed. 
Combination of PR-HP parameters was identified as the optimum choice for the filtering 
procedure. The distinguished states in data (high/low/change mode) using the adopted 
mode, long term average and percentile gated bands showed efficiency in removal of the 
noisy data caused by rig components, i.e. collaring and coupling effects from rod 
extensions. The applicability of normalizing process in removing the hole depth 
dependencies of MWD data were evaluated using correlational analysis. As a result, the 
hole-based normalizing method showed better performance in removing the hole depth 
dependencies and stepwise problem in MWD data. The presented procedure can generally 
be applied on any retrieved MWD data from each drill rig. The established MWD data 
center can structure and manage a big amount of MWD and grouting data to facilitate 
storing and extracting. The generated database mimics the big data characteristic 
(volume, value, variety, velocity and veracity), which not only can continuously be 
updated by upcoming data but also the users via the designed queries are able to extract 
desired data. It is an important tool for further deeper analyses of MWD data through 
modern approaches i.e. AI modeling.  Incorporating the database with other 
geomechanical data sources can provide more accurate and realistic physical 
interpretations from MWD and grouting data.  
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8. AN PROPOSED IDEA OF USING ARTIFICIAL 
INTELLIGENCE ON MWD AND GROUTING DATA  

In the context of geotechnical engineering, AI enables us to process vast amounts of data 
from geotechnical tests, site investigations, and historical records, and extract meaningful 
insights. This means that AI can identify patterns and relationships that might be 
challenging or even impossible for human engineers to spot. Additionally, AI can enhance 
the speed and accuracy of geotechnical analysis. Tasks that once required hours or even 
days of manual calculations can be done in a fraction of the time. This allows engineers 
to focus more on the creative aspects of their work, such as designing innovative solutions 
to engineering challenges. 

The importance and globally fast growth of the AI systems are shaping the future of nearly 
every industry related to civil/geoengineering and will continue to act as a technological 
innovator for the foreseeable future. Toward this emerging technology, prediction of 
grouting design using AI approaches through combination of both MWD and grouting 
data can be highlighted as a novel idea. The estimated Lugeon values from control holes, 
as the benchmark criteria, can most probably be used to define grouting success, i.e. 
evaluating different grouting designs to detect which boreholes will fail or not pass the 
grouting criteria. A Lugeon is a unit devised to quantify the water permeability of bedrock 
and the hydraulic conductivity resulting from fractures. Table 1 shows an overview of 
the data types i.e. MWD and grouting design parameters which will be included in the AI 
model. The MWD should be acquired from the drilled rock mass. The trained optimum 
AI model then will predict the Lugeon value, an indicator to evaluate the successfulness 
of grouting design. The Lugeon values for the training dataset can be read from water 
flow protocols i.e. the control boreholes after grouting. Other grouting parameters (e.g. 
maximum pressure (bar), total volume (liter), the fan-based number of holes) except the 
duration time (second) can directly be acquired from the data files. Grouting duration 
time should be calculated based on the time-dependent volume data. As an example 
(Figure 11), the difference between the reaching to maximum grouting volume (21:04:34) 
and the start time (21:04:17) reflects the duration time of 17s.  
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Table 1. Input and output parameters for the AI idea 
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During this process, AI will learn the relationships between the input and output (Table 
1). Subsequently, the AI model will be used to test different grouting designs to give an 
indication of the design success. The perspective of this idea is to select the optimum 
grouting design and even an environmental-friendly design by the use of the least amount 
of grout materials. 

Figure 4. Plot of one grouting hole from real time grouting data 

This idea, simply can be described in the following five steps: 

Step 1: Correlating the grouting and MWD hole numbers 

Data and header split, both MWD and grouting data (e.g. Figure 2, data extraction), 
should be carried out. The hole number and corresponding hole position can be read out 
from the MWD data file. However, the borehole number and the position information is 



23 
 

BeFo Report 242 
 

not stored in the grouting file (usually .xml file format). The distribution of grouting hole 
numbers can only be read out from borehole map in .pdf format. Since this idea is hole 
based, it is important that the MWD data and grouting data are taken and compared from 
the same hole or spatially very close to each other. The position information from all the 
boreholes will be compared and used for borehole correlation.  

Step 2: Correlate the hole number for MWD and the control hole MWD  

Since in a drilling sequence, the number of control holes after grouting are usually less 
than the total MWD holes, the spatially correlating between the control and MWD holes 
is important. However, for an appropriate spatial analysis and borehole selection the 
minimum distance between the control and MWD hole should be defined in advance. 
Overall, the closer spatially located of MWD to the control holes will be selected for later 
usage and the rest will be discarded.  

Step 3: Fracture index (FI) estimation 

The fracturing index (FI) can be evaluated using the variation of the components of MWD 
data including penetration rate (PR), rotation pressure (RP), and percussive pressure (HP) 
as presented by Ghosh et al. (2017), Navarro et al. (2018a and 2019) and van Eldert et al. 
(2021a  and 2021b). Therefore, the following established equations can be used to get the 
FI based on the variation of the MWD parameters.  

FI = �𝐻𝐻𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣
𝐻𝐻𝐻𝐻����

+ �𝐹𝐹𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣
𝐹𝐹𝐻𝐻����

+ �𝑅𝑅𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣
𝑅𝑅𝐻𝐻����

     𝐻𝐻𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣 = ∑ �∑ 𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛+𝑖𝑖
𝑖𝑖
𝑁𝑁+1

−  𝐻𝐻𝐻𝐻𝑖𝑖�𝑖𝑖+𝑛𝑛
𝑖𝑖  

𝐹𝐹𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣 = ∑ �∑ 𝐹𝐹𝐻𝐻𝑖𝑖𝑛𝑛+𝑖𝑖
𝑖𝑖
𝑁𝑁+1

−  𝐹𝐹𝐻𝐻𝑖𝑖�𝑖𝑖+𝑛𝑛
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By estimating the FI for each borehole, the total length of the fracture zones can be 
calculated with a given threshold of FI.  

Alternatively, the interpolated parameters such as rock hardness, fracture width and water 
quantities from software ‘GPM Tunnel+’, Rockma can be used in AI modelling. The 
seven different evaluation parameters categories: strength of intact rock (UCS), small 
fractures, medium-size fracture, large fracture, small quantities of water, medium 
quantities of water and large quantities of water can be used as input parameters together 
with the real time grouting parameters (Zetterlund et al., 2017).   

Step 4: Selecting the representative data for the whole of the borehole 

Since the data for AI solution is hole-based, the selection of one row of parameters that 
represents the whole borehole is needed. The selection method can be: 1) average of the 
data along one borehole, 2) taking the representative values for all the parameters, 3) 
selection of one row based on one criterion: e.g. the row with the highest PR. Different 
selection methods should be tested and compared to capture the optimum criterion.  
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This needs to be investigated and it might happen that the original MWD parameters are 
not necessary for the AI modelling process.  

Step 5: Calculation of grouting parameters and database construction 

This step will be carried out based on the instruction presented in Table 1 and Figure 11. 



25 
 

BeFo Report 242 
 

9. RECOMMENDATIONS FOR FUTURE WORK 

1. Sensitivity analysis of different combinations of MWD parameters is recommended. 
The supervised Machine Learning methods such as Random Forest and Gradient 
Boost can be used to evaluate the feature importance of all the parameters and give 
scores that represent the importance of each parameter.  
Technically, this concern was one of the main critical points why in this project 
different combinations of MWD parameters in both filtering and normalizing for 
trend analyses and anomaly identifications were examined. As a result, deeper 
normalizing analysis can reveal more details about the anomalies and trends in the 
formation that may be of interest for drilling (e.g. changes in lithology, porosity, or 
permeability). In this case the sensitivity analysis not only can identify the 
importance of each recorded parameter in MWD data but also assists to understand 
how changes in geomechanical characteristics (e.g. characterized rock mass, 
geological mapping, rock physical properties) might be reflected in the MWD data. 
AI is one of the main attractive approaches for sensitivity analysis.  

2. To extract physical meaningful interpretation from MWD data, the geoengineer 
should: 1) have good understanding of the formation properties, 2) have an ability 
in anomaly recognition and trend analysis, 3) be able to compare the data across 
boreholes at different times, 4) have capability to integrate MWD data with other 
data sources.  

3. To understand the causes of the outliers in the MWD data, the best way is to compare 
MWD data with the true rock properties. These true rock properties can be obtained 
from core drilling or borehole filming exactly next to the MWD hole which provides 
information about rock qualities, fractures, fracture thickness and rock types as a 
function of drilling depth. By taking these steps (1, 2 and 3), analysts can gain 
valuable insights into the structure and properties of the formation being drilled to 
make decisions for further interpretation of outliers. This leads to highlight the 
importance of pattern/trend analysis to gain more interpretable physical details on 
the normalized MWD data, specifically when such data are incorporated with other 
geotechnical information, i.e. rock mass characteristics and geological mapping. 
Thus, the methodology presented can be a valuable supplementary tool as a basis 
for decisions.  

4. Develop  3D spatial FI-based models/maps between boreholes and highlight the 
identified/predicted fracture zones and then compare with the after-excavation 
geological mapping.  
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APPENDIX A: 

Some of the industrial companies with great efforts in the development of MWD data 
collection and analysis: 

Sweden 

Sandvik (https://www.rocktechnology.sandvik) 

Epiroc (https://www.epiroc.com) 

Rockma (https://www.rockma.com/) 

Norway 

Bever Control (https:www.bevercontrol.com) 

Some of the companies and organizations with great efforts in applying MWD data in 
infra geoengineering projects: 

SIP-STRIM (https://www.sipstrim.se/project/innovative-dth-drill-monitoring-a-pre-
study) 

Swebrec: Swedish Blasting Research Centre (https://www.ltu.se/centres/swebrec/Vara-
projekt) 

Russia 

Zyfra mining (https:www.zyfra.com) 

Kyrgyzstan 

Blast maker (http://blastmaker.kg) 

Canada 

Peck Tech Consulting (http://pecktech.ca) 

Spain 

MAXAM (https://www.maxamcorp.com) 

https://www.rocktechnology.sandvik/
https://www.epiroc.com/
https://www.rockma.com/
https://www.sipstrim.se/project/innovative-dth-drill-monitoring-a-pre-study
https://www.sipstrim.se/project/innovative-dth-drill-monitoring-a-pre-study
https://www.ltu.se/centres/swebrec/Vara-projekt
https://www.ltu.se/centres/swebrec/Vara-projekt
http://blastmaker.kg/
http://pecktech.ca/
https://www.maxamcorp.com/
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APPENDIX B: 

The pseudo code of the automated procedure in the case of single hole and peer group-
based normalization. 

1. The implemented pseudocode for hole-based:

1. Read data from one borehole

2. For i=1 to number of holes (Figure 5)

3. Rod length checking through data splitting (e.g. Figure 2)

4. Automating process through inner loops (Figure 8)

5. Repeat

5.1. Calculate the correlation coefficient between each parameter and hole depth

5.2. Condition analysis of correlational dependencies:

5.3. If coefficient >= 0.1, continue with normalization;

5.4. else,

5.5. Terminating process as there is no normalization for the parameter

5.6. Linear regression analysis for each rod and each parameter, 𝑦𝑦 = 𝑏𝑏1𝑥𝑥 + 𝑏𝑏0 (𝑏𝑏0, 𝑏𝑏1: 
the regression parameters estimated for each rod and each parameter) 

5.7. Removing the entire depth dependency based on the coefficient. 𝑦𝑦𝑛𝑛𝑛𝑛𝑣𝑣𝑛𝑛 = 𝑦𝑦𝑛𝑛𝑜𝑜𝑜𝑜 −
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑏𝑏1𝑥𝑥 − 𝑏𝑏0 + 𝑏𝑏0,𝑣𝑣𝑛𝑛𝑟𝑟1 (𝑏𝑏0,𝑣𝑣𝑛𝑛𝑟𝑟1: intercept of the linear model from rod number 1 for   
each parameter; 𝑦𝑦𝑛𝑛𝑜𝑜𝑜𝑜 and𝑦𝑦𝑛𝑛𝑛𝑛𝑣𝑣𝑛𝑛: the measured and normalized data respectively).  

6. Until the number of holes (Repeating steps 5-7 for i= number of holes)

7. End For

2. The implemented process for peer group (merged)-based data:

1. For i=1 to number of holes

2. Read all data

3. Peer group analysis (merging procedure)

3.1. All data

3.2. Based on folder project according to holes from one sequence (fan) for each 
parameter) 

3.3. Rod length checking through data splitting (e.g. Figure 7) 
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4. End For i

5. For J=1 to number of peer groups (Figure 8)

6. Repeat

6-1. Calculate the correlation coefficient between each parameter and hole depth

6.2. Condition analysis of correlational dependencies:

6.3. If coefficient >= 0.1, continue with normalization;

6.4. else,

6.5. Terminating process as there is no normalization for the parameter

6.6. Linear regression models for each rod and each parameter (merged boreholes) in 
the form of 𝑦𝑦 = 𝑏𝑏1𝑥𝑥 + 𝑏𝑏0 (𝑏𝑏0, 𝑏𝑏1: the regression parameters estimated for each rod and 
each parameter from merged data). 

6.7. Removing the entire depth dependency for each hole based on the coefficient using 
𝑦𝑦𝑛𝑛𝑛𝑛𝑣𝑣𝑛𝑛 = 𝑦𝑦𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑏𝑏1𝑥𝑥 − 𝑏𝑏0 + 𝑏𝑏0,𝑣𝑣𝑛𝑛𝑟𝑟1 (𝑏𝑏0,𝑣𝑣𝑛𝑛𝑟𝑟1: the intercept of the linear model 
from rod number 1 for each parameter; 𝑦𝑦𝑛𝑛𝑜𝑜𝑜𝑜 and 𝑦𝑦𝑛𝑛𝑛𝑛𝑣𝑣𝑛𝑛: the measured and normalized 
data respectively). 

7. Until the number of peer groups (fan data) ((Repeating steps 6-8 for J= number of
peer groups)

8. End For J
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