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Figure 43: Breakout shape for the initial guesses. It can be seen that while the width is the same, the depth is
very different. Moreover, in contrast to the small-scale simulation, the breakouts are dog-ear shaped instead
of cusp shaped.
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PREFACE

The ability to describe and predict the stability of a borehole and to have a possibility to
assess the in situ stress state is relevant for a large number of applications. These include
but are not limited to tunneling, the storage of nuclear waste, energy applications, such
as gas production and hydrothermal energy and mining.

The semi-analytical tool that is presented in this report has been shown to agree well
with experimental results and is significantly faster than the more precise but unsuitable
for brittle rock finite element simulations of the same problem. It is therefore hoped that
it will provide a simple and easy to use tool for applications involving excavations in
rock, with emphasis on the field of civil engineering and energy production.

The work has mainly been carried out by Eleni Gerolymatou, Chalmers University of
Technology, in collaboration with Asa Fransson, Golder Associates and University of
Gothenburg (focusing on the concluding part where data from a previously conducted
field test has been used). The project's reference group consisted of Diego Mas Ivars,
SKB, Jonny Sjoberg, Itasca, Thomas Wettainen, LKAB and Per Tengborg, BeFo. In
addition, the report was reviewed by Lars-Olof Dahlstrom, Golder Associates. The
project was funded by BeFo, Rock Engineering Research Foundation.

Stockholm, 2020
Per Tengborg
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FORORD

Att kunna beskriva och forutsdga ett borrhéls stabilitet och att kunna beddma dess
spanningstillstdnd &r relevant for ett stort antal tillimpningar. Dessa inkluderar men &r
inte begrinsade till drivning av tunnlar, lagring av kérnavfall, energitillimpningar,
sdsom gasproduktion och hydrotermisk energi, och gruvdrift.

Det semi-analytiska verktyg som presenteras i denna rapport har visat sig
Overensstimma vdl med experimentella resultat och &r betydligt snabbare &n
finitelementsimuleringar som kan vara mer exakta men som da ocksa &r bade svarare att
kalibrera och mer besvérliga att utfora. Forhoppningen é&r att detta kommer att vara ett
enkelt och lattanvént verktyg for tillimpningar som involverar tunneldrivning i berg,
med tyngdpunkt pa samhéllsbyggnad, anldggning och energiproduktion.

Arbetet har i huvudsak genomforts av Eleni Gerolymatou, Chalmers tekniska hogskola,
i samverkan med Asa Fransson, Golder Associates och G&teborgs universitet (med
fokus pa den avslutande delen dér underlag fran ett tidigare utfort faltforsok har
anvénts). Projektets referensgrupp har bestétt av Diego Mas Ivars, SKB, Jonny Sjoberg,
Itasca, Thomas Wettainen, LKAB och Per Tengborg, BeFo. Rapporten har dven
granskats av Lars-Olof Dahlstrom, Golder Associates. Projektet har finansierats av
BeFo, Stiftelsen Bergteknisk Forskning.

Stockholm, 2020
Per Tengborg
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SUMMARY

The present report describes a methodology developed within the frame of the BEFO
project 408 for two applications. The first one concerns the prediction of the shape of
borehole breakouts when the material properties and the in situ stress state is known. The
second concerns the assessment of the in situ stress state when the material properties and
the shape of the borehole breakouts is known. Both the possibility of being able to predict
the stability of a borehole and the possibility of being able to assess the in situ stress state
are relevant for a large number of applications. These include but are not limited to
tunneling, including the smaller boreholes created for anchoring and blasting, the storage
of nuclear waste, energy applications, such as gas production and hydrothermal energy
and mining.

The concept presented here is based on the method of conformal mapping. Conformal
mapping is based on complex analysis and was initially applied to the solution of flow
problems, most notable aecrodynamics. In the field of civil engineering the method is most
commonly used for the solution of groundwater flow problems with the approach of flow
nets. In this report, the theory of conformal mapping, as well as the numerical methods
used and their development, are presented in chapter 4 for the interested reader. With the
possible exception of the sections referring to examples, reading this chapter is not
necessary for most readers.

The main results for the evaluation of the shape of the borehole breakouts are presented
in chapters 5 and 6, while the main results for the evaluation of the in situ stress state are
presented in chapter 7. Chapter 8 aims to provide an example for the application suggested
here to real project data. The data used originate from the BRIE project, standing for
Bentonite Rock Interaction Experiment and funded by SKB. For the needs of this project
boreholes were cored in crystalline, granitic rock and subsequently bentonite parcels were
installed. The whole construct was subsequently overcored for further testing and
observation. Fracture mapping both before and after the introduction of bentonite is
available, as well as estimates of the in situ stress state. Chapter 9 closes the report with
conclusions, some observations and possible future extensions.

The method that is presented here has been shown to agree well with experimental results
and is significantly faster than the more precise but harder to calibrate and more
cumbersome finite element simulations of the same problem. It is therefore hoped that it
will provide a simple and easy to use tool for applications involving excavations in rock,
with emphasis on the field of civil engineering and energy production.

Keywords: in situ stress, borehole breakouts, rock stability, brittle failure

BeFo Report 211



BeFo Report 211

vi



vii

SAMMANFATTNING

Foreliggande rapport beskriver en metod som utvecklats inom ramen f6r BEFO-projekt
408 och for tva olika applikationer. Den forsta handlar om férutsdgelse av geometri for
borrhélsutfall ndr materialegenskaper och spanningstillstdnd in situ ar kdnda. Den andra
avser beddmning av spadnningstillstind ndr materialegenskaper och geometri for
borrhalsutfall dr kdnda. Bdde méjligheten att kunna forutséga stabiliteten i ett borrhal och
mdjligheten att kunna beddma spinningstillstdndet ar relevanta for ett stort antal
tillimpningar. Dessa inkluderar men &r inte begriansade till drivning av tunnlar, inklusive
de mindre borrhal som anvénds for forankring och sprangning, lagring av kérnavfall,
energitillampningar, sdsom gasproduktion och hydrotermisk energi, och gruvdrift.

Konceptet som presenteras hédr dr baserat pd metoden for “conformal mapping”.
“Conformal mapping” &r baserad pd komplex analys och applicerades initialt pa
16sningen av flédesproblem, exempelvis aerodynamik. Inom samhillsbyggande anvinds
metoden oftast for att 16sa problem med grundvattenfloden (med hjélp av flodesnét). I
kapitel 4 i denna rapport presenteras teorin for “conformal mapping” och anvinda
numeriska metoder och deras utveckling. Férutom de avsnitt som hédnvisar till exempel
ar detta kapitel att betrakta som en fordjupning for den mer intresserade ldsaren.

De viktigaste resultaten relaterade till utvdrdering av geometri for borrhalsutfall
presenteras i kapitel 5 och 6, medan de viktigaste resultaten for utvirdering av
spanningstillstand in situ presenteras i kapitel 7. Kapitel 8 syftar till att bedoma och ge
exempel pd anvidndbarheten for verkliga féltdata. Data kommer fran projektet BRIE,
Bentonite Rock Interaction Experiment, som har drivits och finansierats av SKB. For
detta projekt borrades borrhal i kristallint berg och bentonit installerades sedan i
borrhdlen. Genom borrning och vajersagning lyftes bade berg och bentonit sedan upp for
ytterligare observationer och tester. Savil sprickkartering fore och efter installation av
bentonit som skattningar av spanningstillstand in situ finns att tillgd for forsdksplatsen.
Kapitel 9 avslutar rapporten med slutsatser, ndgra observationer och mdjligheter till
framtida utveckling av metoden.

Metoden som presenteras hir har visat sig &verensstimma vil med experimentella
resultat och dr betydligt snabbare &n finitelementsimuleringar som kan vara mer
exakta men som dd ocksd dr bade svéarare att kalibrera och mer besvirliga att
utféra. Forhoppningen &r att detta kommer att vara ett enkelt och ldttanvént
verktyg for tillimpningar som involverar tunneldrivning i berg, med
tyngdpunkt pd samhillsbyggnad, anldggning och energiproduktion.

Nyckelord: in situ spanningar, borrhalsutfall, bergsstabilitet, sprott brott
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1. INTRODUCTION

Boreholes and other cavities of a circular cross-section are relevant to a wide variety of
applications, such as tunneling, geothermal energy production, oil and gas production,
nuclear waste disposal and stress measurement, with various methods such as overcoring,
hydrofracturing or through the interpretation of borehole breakouts. Breakouts are of
importance in all above applications, both as a threat to borehole or tunnel stability and
as a tool for the primary stress state interpretation. The necessary simulations are
challenging from a numerical point of view, as the problem is linked to loss of numerical
stability for ductile rock and loss of continuity for brittle rock. The first case can be
tackled using advanced continuum formulations, such as micropolar of nonlocal models
(Noll, 1972), to model the material behavior. The second is more challenging and no
continuum-based solutions are currently available.

The present project presents a semi-analytical method for both the prediction of breakouts
in brittle rock and their use to assess the primary in situ stress. The project is subdivided
into three steps. In the first, a tool is developed for the prediction of the form and size of
the breakouts for given primary stresses and material parameters. The correctness is
verified by means of comparison to analytical solutions. In the second step, using also the
method developed in the first step, a tool is developed for the estimation of the primary
in situ stress for given geometries of the borehole breakouts and given material properties.
Finally, the applicability and efficiency of both resulting tools is validated against data
from the literature and field experiments, with focus on the BRIE (Bentonite Rock
Interaction Experiment) project. The aim is to provide a simple, fast and easy to use tool
for the assessment of borehole and tunnel stability and for the estimation of the in situ
stress in brittle rock.

1.1 Project background

As already mentioned, boreholes and other cavities of a circular cross-section are relevant
to a wide variety of applications. Breakouts are local failures observed at the wall of the
cavity and can vary strongly in shape and intensity. Examples are shown in Figure 1.
From left to right one sees (a) Spiral failure pattern in Posidonia slate under isotropic
stress after (Meier et al., 2013), (b) Dog-ear breakout in Westerly granite under
anisotropic stress after (Song & Haimson, 1997) and (c) Slit shaped breakout in Berea
sandstone under anisotropic stress state with a high mean pressure after (Haimson &
Kovacich, 2003). Similar effects have been directly observed in tunnels and shafts.

Shear and compaction induced breakouts tend to orient themselves parallel to the
minimum principal stress. Tensile breakouts, in the form of cracks, tend to orient
themselves normal to minimum principal stress. Deviations from this orientation are rare
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but have been observed in intensely anisotropic rocks, such as shale (Choens, Lee,
Ingraham, Dewers, & Herrick, 2019).

(@) (b) (c)

Figure 1. Different types of borehole wall failure (a) shear spirals modified after (Meier,
Rybacki, Reinicke, & Dresen, 2013), (b) dog ear breakout modified after (Song &
Haimson, 1997), (c) slit shaped compression breakout modified after (Haimson &
Kovacich, 2003).

Breakouts are of importance both as a threat to borehole or tunnel stability and as a tool
for the primary stress state interpretation. For the interpretation of the primary in situ
stress, the breakouts are logged along the depth of unlined boreholes. Several techniques
are available, such as optical, acoustic (ultrasound) and electrical resistance imaging. A
further popular method involves data from four arm caliper tools, used widely in the
hydrocarbon industry. The orientation and type of the breakouts provides information
concerning the orientation of the principal stresses. Breakout orientations can rotate in
inclined boreholes and may not always directly yield the horizontal stress orientations. It
is therefore considered preferable to estimate the maximum horizontal stress from
breakouts in approximately vertical boreholes, with a deviation from the vertical that is
smaller than 10°. In order to derive information concerning the magnitude of the principal
stresses, analytical elastic solutions, mostly the solution introduced by Michell (Michell,
1899), are used as a rule. Solutions like this do not take into account the redistribution of
stresses as the failure progresses. When the breakouts are shear induced, a domain can be
determined with these solutions in which the stress state is likely to be, assuming frictional
failure in the material. This is possible, due to the fact that the width of the breakouts
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remains constant during the procedure of the breakout formation, as shown by (Zoback
et al., 2003), see Figure 2. The material tested in this case was limestone.

V2, N
& \

Figure 2. Evolution of borehole breakouts, experimental images on the right modified
after (Zoback et al., 2003).

A set of ranges, rather than a value, of stresses is determined, because the depth of the
breakout cannot be utilized without considering stress rearrangement. For compressive
and tensile modes of failure the width cannot be utilized either, due to the form of the
breakouts, so that only the orientation can be recovered from the data.

As far as energy production is concerned, following the state of practice, the first part of
boreholes is drilled starting with a larger radius and reducing diameter with increasing
depth. This is required by the placement of the casing, stabilizing the borehole against
collapse and protecting both borehole and surrounding formation from the circulating
fluid. Newer technologies allow for a section before branching with constant radius. The
lower part of production boreholes exhibits branching, often in the horizontal or sub-
horizontal direction. In the majority of cases this portion of the hole does not have a
casing, to allow fluid circulation by means of a pressure gradient and is thus particularly
exposed to failure. Production boreholes have an average depth of about 2000 m, so that
failures are particularly costly.

Borehole breakouts are also of importance for fossil fuel production, because they
influence sand production, which in turn influences the lifetime of the borehole and the
machinery and the rate of production. A further domain of interest is nuclear waste
disposal, as time-delayed formation of breakouts can form preferential pathways for
groundwater. Beyond this, smaller boreholes are often part of engineering projects, either
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as a part of the site investigation or as a part of the construction process, for example
when bolting or blasting.

Last but not least, breakouts also occur in civil and in mining applications, both in the
smaller scale of the boreholes constructed for bolting, for blasting and for site
investigation, and in the large scale of tunnels and shafts.

1.2 Project purpose

Within the frame of this project, a simple and easy to use semi-analytical tool is proposed
for brittle rock or for cases where the breakout material is detached from the borehole
wall. The assumption is made, that the material is elastic up to the point of failure and
removed from the cavity wall after this. The problem is thus reduced to the evaluation of
the stress state around a cavity with an arbitrary, i.e. non-circular, shape. To this end
conformal mapping (Schinzinger & Laura, 2003) will be used. This technique has been
used for several decades for the estimation of the stress distribution of plane problems
with a complex geometry, especially in fracture mechanics. If the stress distribution is
known, the domains where failure takes place can be pinpointed and removed from the
configuration. In that way, the geometry of the cavity converges to the final one. The
evaluation of the stresses is analytical, but the evaluation of the mapping needs to be
performed numerically. Thus, the method can be termed as semi-analytical.

Once the forward problem is solved, i.e. the evaluation of the shape of the breakouts for
known principal stress state, the backward problem can be solved as well, in the form of
an optimization procedure. The task is to find the principal stresses, when the breakout
geometry is known. Thus, it is enough to pinpoint the value of the principal stresses that
yields the optimal fit between theoretical and measured results.

Since the method is based on elasticity and conformal mapping, it does not require time
integration, very fine discretization or a large number of iterations. It is therefore to be
expected that it will possess a very low computational cost.

A further advantage is the very wide range of materials to which it is applicable. The
method can be used on all brittle rocks, including granites, shales, limestones and
sandstones. The parameters of the failure criterion only need to be adjusted accordingly,
for example the uniaxial strength and the parameter m, if the Hoek-Brown criterion is
used. The method cannot be applied only in the case that the failure is ductile.

Local perturbations in strength, for example local strength reduction in the vicinity of the
borehole, due to drilling induced damage, and anisotropy in strength, can be easily
incorporated in the formulation, as the method requires only uniformity in the elastic
properties and not in the failure criteria. Anisotropy in the elastic properties can also be
taken into account using conformal mapping, see for example (Schinzinger & Laura,
2003), but is not within the scope of this project, because the anisotropy of the elastic
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properties of the material in situ is in practice often not known. Heterogeneity in the
elastic properties cannot be taken into account, unless using much more complex
numerical approaches.

A foreseeable drawback is that the resulting tool cannot take into account local stress
perturbations due to single, discrete fractures in the vicinity of the borehole, unless these
intersect the borehole. In this case, the tool will yield the stress field including the
perturbation in the stress field caused by the fractures, as it is this stress state that governs
the shape of the borehole breakouts. If the fractures intersect the borehole they can be
included in the initial geometry of the borehole, which does not need to be circular.

Though this method has been rarely used to evaluate the stress state around non-circular
openings in rock engineering (Exadaktylos, Liolios, & Stavropoulou, 2003; Kargar,
Rahmannejad, & Hajabasi, 2015), it has never been applied to the progressive formation
of borehole breakouts or to the estimation of the in situ stress.

1.3 Report outline

The present report consists of a total of nine chapters, with the present chapter serving as
an introduction. The second chapter contains a literature review on different aspects of
the observation and simulation of borehole breakouts. Topics linked to observation that
are discussed include the observation of their formation, both on the situ and under
controlled conditions in the laboratory, the mechanics of their formation and arrest.
Methods currently used for their prediction and simulation are also discussed and the
approach commonly used for the assessment of the in situ stress state is briefly outlined.

The general methodology is outlined in chapter 3. This chapter summarizes the
underlying assumptions of the method and its limitations and presents an outline of the
algorithms used. The theory and developed method used for the prediction of the shape
of borehole breakouts are presented in chapter 4. This chapter includes the mathematical
theory and background of the method, as well as details of the implementation, that may
only be of interest to a small number of readers. For the majority of readers, the perusal
of this chapter is not necessary and the description of the algorithms, presented in chapter
3, is sufficient to follow the rest of the contents.

Chapters 5 to 7 present results of the numerical implementations performed. The first two
are concerned with the prediction of the shape of the borehole breakouts, while the third
is concerned with the assessment of the in situ stress state. As the series expansions used
in the approximation of the geometry leads to some small oscillations, some form of
regularization is necessary. Two alternatives are presented. In chapter 5 a moving average
is used, while in chapter 6 an interpolation is used. In chapter 6 scale effects are also
introduced.
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In chapter 8 an attempt is made to assess the applicability of the presented method to real
data. The information used comes from the BRIE (Bentonite Rock Interaction
Experiment), where a number of well documented boreholes were created and filled with
bentonite. Due to the uncertainties in the input, the results are presented in the form of a
parametric analysis.

The last chapter, chapter 9, contains a discussion on the presented results, some
conclusions concerning the method and some thoughts on future work.
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2. LITERATURE REVIEW

In this chapter a literature review of the different aspects of the project is presented. The
different aspects are discussed separately but are not necessarily unrelated. Observations
both in situ and in the laboratory are discussed first, with a separate section devoted to
breakout arrest. The existing efforts at prediction and simulation of the formation
breakouts follow and the state of practice for the use of borehole breakouts to assess the
in situ stress state closes the chapter.

2.1 In situ observations and laboratory tests

Breakouts have been observed both on site and in the laboratory. /n sifu observations refer
to boreholes, shafts and tunnels, with the best documented case for the last two being the
Underground Research Laboratory, constructed in granite in Pinawa, Manitoba. The in
situ stress is estimated in (Haimson, Lee, Chandler, & Martin, 1993). It is concluded that
the vertical stress varies between 12.0 and 13.5 MPa, the maximum horizontal is in the
range ou = 54 +/- 13 MPa and the minimum horizontal in the range on = 36 +/- 16 MPa
at a depth ranging from 450.7 m and 510.8 m. Breakouts in tunnels and shafts with a sub-
horizontal direction were observed, aligned approximately in the vertical direction.

Observations in the laboratory offer the advantage that the boundary conditions and the
material properties are known or can be measured. Usually the borehole breakout and
width are measured, as shown in Figure 3, at different initial stresses. The breakout width
is characterized by the aperture angle 6, while the depth is measured from the center of
the borehole and is symbolized with d in the figure.

Figure 3. Breakout geometry.

As mentioned in the introduction, depending on the stress state the shape of the breakout
varies, as shown in Figure 1. An example of the dependence of the width and the depth
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of breakouts for Tablerock sandstone on the stress state is given in Figure 4 after
(Haimson & Lee, 2004). The breakouts observed were of the dog-ear type and it can be
observed that increasing stress ratio leads to both increasing depth and width of the
breakouts.
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Figure 4. Breakout depth and width for Tablerock sandstone after (Haimson & Lee,
2004). The first column of the legend gives the minimum horizontal stress and the
second gives the vertical stress. The boreholes were bored in the vertical direction.

The type of rock also affects the type of breakout. High porosity rocks have higher
probability of showing slit-shaped breakouts, while low porosity rocks with high strength,
such as granite, tend to form dog-ear shaped breakouts or tensile fractures. Anisotropy
can also affect the shape and the orientation of breakouts, as discussed in (Choens et al.,
2019), on the basis of experimental results on shale.

The micromechanics of failure also vary depending on the rock type and on the stress
state. In sandstones under medium mean pressure shear failure or spalling was observed,
while grain crushing was noted for slit-shaped breakouts (Haimson, 2007). Spalling and
extensile failure seem to be the dominant mechanism in granitic rocks, as shown in (Lee
& Haimson, 1993). For the modeling the micromechanical mechanism of failure is
secondary and expressed in the failure criterion, but, for the understanding of the
mechanical procedure underlying the formation and arrest of breakouts, the
micromechanics are of great importance.

2.2 Breakout formation and arrest

As already mentioned, the geometry of the failure of the borehole wall varies strongly
with the mode of failure. Tensile failure takes place when the tensile stresses at the
borehole circumference are larger than the tensile strength of the rock. This happens when
the ratio of the maximum to the minimum in-plane principal stress or the internal pressure

BeFo Report 211



in the borehole are large enough. The failure presents itself in the form of a crack oriented
parallel to the direction of the maximum in-plane principal stress, as shown after
hydraulic fracturing tests on sandstone blocks (Stanchits, Surdi, & Gathogo, 2014). As a
rule, such tensile cracks are not denoted as breakouts, but they belong in the same
category from a physical and mechanical point of view.

Shear or splitting failure produces so called ’dog-ear’ or *cusp’ breakouts, similar to what
was observed on tests on a porous sandstone in (Haimson & Lee, 2004). It is mostly this
type of borehole breakout that is used for the assessment of the in situ primary stress state.
Compaction induced failure leads to slit shaped breakouts, very similar to compaction
bands, and was also observed in tests on porous sandstone by (Haimson & Lee, 2004).
Such breakouts are also in part induced by shear stresses, but close observation has shown
fragmentation of grains at the advancing tip (Haimson & Lee, 2004), such as what is
observed in compaction bands. This mode has only received more attention in the last
years.

Failure may be ductile or brittle. In the first case the material response may be hardening
or softening, but continuity is preserved. The damaged zone continues carrying some
amount of load, even if not to the same extent as it did before yield. In the case of brittle
failure continuity is lost. The damaged material is removed from the borehole wall,
leaving a gap behind. In reality, the distinction is not perfectly clear cut. Closer
observations using methods, such as scanning electron microscope imaging or thin
sections, have shown damaged areas in the vicinity of the breakout (Haimson, 2007; Lee
& Haimson, 1993) in cases where the general image was that of brittle failure. This
indicates the likely presence of a process zone also in the case of what macroscopically
appears to be brittle failure.

Scale effects are commonly present in rock mechanics. It has been observed that the
initiation of breakout formation is strongly sensitive to scale. Boreholes, shafts or tunnels
with large diameters start showing damage at loads that are in agreement with theoretical
predictions using the solution of Kirsch. Smaller openings on the other hand only start
exhibiting failure at much higher loads, often several times greater than the ones
theoretically predicted by the theory of Kirsch (Cuss, Rutter, & Holloway, 2003; Meier
etal., 2013). Based on elasticity theory, the initiation of breakouts should take place when
the external pressure is equal to one half of the uniaxial strength. The external pressure at
which breakout initiation is observed is known as critical pressure. As shown in Figure 5,
breakout initiation is observed at significantly higher loads than those predicted by the
elastic solution, depending on the material and on the size of the hole.

It has been observed by several authors, such as in (Herrick & Haimson, 1994; Zheng,
Kemeny, & Cook, 1989), that the propagation of the breakouts takes place in such a way
that their width remains constant, while the depth gradually increases. The procedure is
sketched in Figure 2. Successive zones of material are detached either by spalling or by
the formation of shear bands. Each successively detached domain is less wide than the
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previous one, leading to an overall shape that becomes narrower with increasing depth.
The procedure continues until the arrest of the failure propagation.

L ® Black shale
™ 15+ O Berea sandstone
B ¢ Castlegate sandstone
-q% ® Bentheim sandstone
5 v Alabama limestone
» 10}
%]
o
o ()
8 5 H v
T o v
© & ' 8 v v
___________________________________ v ve
0
0 20 40 60 80

borehole diameter [mm]

Figure 5. Scale effects as observed in laboratory tests.

The reasons for the arrest of dog-ear of cusp breakouts are not completely clear. The arrest
may be purely linked to shape variations that lead in turn to stress redistribution. This is
however not likely to be the only reason. It has been postulated that the phenomenon is
linked to a plastic zone (Cheatham, 1993) or a process zone (Meier et al., 2013). The
effect is the same as that of the formation of a plastic radius around a circular hole: the
stresses are locally reduced, and the elastic domain is protected. Alternatively, the arrest
has been attributed to scale effects, see for example (Herrick & Haimson, 1994), which
may in turn be linked to the formation of a process zone.

2.3 Prediction and simulation

The material response can be ductile or brittle. The simulation of breakout formation is
challenging in both cases, in the first case because of the softening of the material and in
the second case because of the loss of continuity. In the ductile regime, failure is
characterized by zones of localized deformation that cannot be modeled by simple
constitutive models in the sense of Noll (Noll, 1972). Nonlocal (Crook, Willson, Jian, &
Owen, 2003), micropolar (Papamichos, 2010) or higher gradient (Zervos, Papanastasiou,
& Vardoulakis, 2001) models can be used to simulate the formation of breakouts in
materials exhibiting softening. In the brittle regime both continuum and discrete
numerical methods have been proposed to simulate borehole breakouts. Among others,
(Herrick & Haimson, 1994; Zheng et al., 1989) used the boundary element method to
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simulate the development of borehole breakouts in brittle rocks and recently (Zhang, Yin,
& Aadnoy, 2018) proposed a methodology using the finite element method. Simulations
using discrete elements have also attempted to provide an answer (H. Lee, Moon, &
Haimson, 2016). In this case, the limited number of particles that can be used poses a
limit to the applicability, since the size dependence that has been observed in situ,
numerically and in the lab, plays a significant role. In terms of analytical methods,
conformal mapping has been used in (Exadaktylos & Stavropoulou, 2002) to evaluate the
stress field around underground openings. However, the shape of the opening has always
been considered known and constant and the provided solutions are only valid for a
specific form of the mapping.

2.4 Stress state assessment

As already mentioned, observations both in the laboratory and in the site have shown that
breakouts evolve in depth, rather than in width, as shown in Figure 2. This means that
successive spalling or shear fracture formation takes place, with the width of the breakout
remaining constant and the depth gradually increasing.

Ve
GPF

Xaee

—> -<—

A

Figure 6. Radial and tangential stresses.

The width of the breakout is therefore determined by the failure of the initial circular
shape of the borehole cross-section. For the initial, circular geometry analytical solutions
are available, based on the theory of elasticity. The most commonly used one is the so-
called solution of Kirsch, known also as the solution of Michell (Michell, 1899).
Assuming the pressure of the drilling fluid to be equal to po, the solution provides the
radial and tangential stresses at the borehole wall as illustrated in Figure 6:

Orr = PO (1)

o9 = (01 +02) + 2 (01 — 02) cos(26) — po 2

BeFo Report 211



12

If the pressure of the drilling fluid is not present, the stress state at the borehole wall is
uniaxial, meaning that the wall will fail, when the tangential stress is larger than the
uniaxial strength ou. This leads to a linear relationship between the principal stresses:

oy = (01 +03)+ 2 (01 — 02) cos(20) 3)

where 0 is the aperture angle of the breakout, as shown in Figure 3. If one of the two
principal stresses is known, then the other stress can also be evaluated. If none of the two
is known, additional information is required to estimate the value of each of the two
stresses. In the present report, a numerical iterative approach is applied to make use of
the breakout depth, as well as of the breakout width.
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3. GENERAL METHODOLOGY

As already mentioned, two different problems are tackled. For the first, conformal
mapping is used to simulate the progressive formation of breakouts, including their depth
and precise shape. For the second, the known shape of the borehole breakout is used to
determine the stress state. For both cases the underlying assumptions are similar and are
discussed in the following section. The different parts of each of the algorithm are
discussed in the last section of this chapter. The details of the algorithms used are
described in detail in the corresponding chapters.

3.1 Assumptions

For the present analysis it is assumed that plane strain is a good approximation of the in
situ conditions, that the material response is elastic-perfectly brittle and that the material
surrounding the borehole is isotropic, as far as its elastic response is concerned.
Anisotropy can be incorporated in solutions using the method of conformal mapping, but
such methods were not used here.

3.2  Algorithm

Two algorithms were developed in the frame of this project. The first is used for the
evaluation of the shape of the borehole breakouts, while the second is used for the
evaluation of the in situ stress and uses the first algorithm as a subroutine.

The algorithm for the breakout evaluation is outlined in Figure 7. The initial borehole
shape is assumed to be circular, though other shapes can also be handled by the code. The
Michell solution (Michell, 1899) is used to evaluate the stress state around the circular
borehole. Using the failure criterion, the area around the borehole where the material fails
is marked and removed. The new boundary of the borehole is evaluated. (@) Conformal
mapping is used to evaluate the stress state around the new geometry. The area that fails
is again removed from the geometry and the new boundary is assessed. The procedure is
repeated from (®) until the area that fails becomes smaller than the tolerance selected in
the algorithm.

For the estimation of the in situ stress state, the previous algorithm is used as a subroutine
and the depth and width of the breakout are used as input. The width of the breakouts is
used to estimate a linear relationship between the principal stresses as explained in section
2.4. Two starting points are selected in terms of the minimum principal stress. From the
Michell solution the maximum principal stress is evaluated for the two points and, using
the first algorithm, the corresponding depth of the breakout is calculated. A modified
bisection method is used to gain a new interval for the solution and the new stress state
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and depth are evaluated. The algorithm is halted when the evaluated breakout depth is
within tolerance from the target breakout depth. The tolerance is set by the user.

( START J

Setting the parame-
ters and dlscretlzlng

Starting:
Step 1, Increment 0

I

Use the Kirsch solution to evaluate
the stress field and the domain that
fails. Discretize again the boundary.

Starting
incrementation

Evaluate the mapping for the new ge-
ometry. Evaluate the new stress field.

Y

( Check for failure and evaluate the area that fails. ]

Tterating
while failure
propagates

Y

[ Evaluate the new geometry ‘

and discretize the boundary.

'

i

( EXIT J

Figure 7. Outline of the algorithm for breakout shape evaluation.
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3.3 A note on conformal mapping

For the present analysis conformal mapping is used. Since the method is not commonly
used in applied geomechanics, a note is included here for the readers that do not wish to
delve into depth in the underling mathematics, presented in the next chapter.

Figure 8. Mapping from a complicated domain with a simple boundary condition to a
simple domain with a complicated boundary condition.

Conformal mapping aims to transform a problem with a complicated geometry into a
problem with a simple geometry. The coordinates of the complicated geometry are a
conformal map of the coordinates of the simple geometry. A conformal map is a
transformation that preserves angles between two lines. In two dimensions this
requirement is fulfilled by any complex function that is infinitely differentiable. The main
property is that the solution of the Laplace equation on the original domain will be a
solution of the Laplace equation in the mapped domain. When other equations than the
Laplace need to be solved, such as the stress balance equations, the solution becomes
more difficult and requires an adaptation of the boundary conditions, as shown in Figure
8.

|

-10 - bedrock

20 5 -0 5 0 5 10 15 20
Figure 9. Conformal mapping applied to water flow.
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Common areas of application of conformal mapping may be found in (Schinzinger &
Laura, 2003), but briefly stated they include electromagnetism, stationary and non-
stationary flows and airfoils. In geomechanics the most common domain of application
are flow nets, where conformal mapping is used to evaluate the isopressure lines and the
flow lines. An example is shown in Figure 9.
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4. CONFORMAL MAPPING

Here conformal mapping is used to simulate the progressive formation of breakouts,
including their depth and precise shape. The algorithm and the basic underlying theory
are given in the rest of the present chapter. The details of the implementation, as well as
the validation against known solutions are also presented.

4.1 Underlying theory

Here the application of conformal mapping to elastic solids is summarized. A more
extended introduction to the topic may be found in (Muskhelishvili, 2010; Schinzinger &
Laura, 2003). It is well known from the theory of elasticity that the stresses in a planar
elastic medium can be written as

_ U _0U U
Txx = W, Tyy = 57, Txy = _m (4)
where U(x,y) is an appropriate solution of the biharmonic equation. The solution may be
expressed in terms of analytic functions as

U(2) = R[z¢(2) + x(2)] ®)
This means that the stresses can be expressed as
Txx + Oy = 4Re[¢/ (2)] = 4R[D(2)] (6)
Ty = Oxx + 2i07y = 2[2¢”(2) + X' (2)] = 2[20(2) + X(2)] (7
090 — Orr + 2019 = [0y — Oy + 2io',\-y]em ®)
where
D(z) = ¢'(2), X(2) =x'(2) )

For the boundary condition along the boundary .£ in terms of tractions, one possible form
is

o — it = 2R[D()] - F[ED(2) + X(2)] (10)

where 0 and 7 are the normal and the tangential components of the external stresses acting
on the boundary .£ , or, more specifically, the projections of the stresses on the outward
normal n and on the tangent t, pointing to the left of n. « is the angle between the normal
n and the axis Ox, measured from the latter. Another possible form of the boundary
condition reads

if£<f\.+m>ds=¢<z>+ZM+m (11)

The solution of the above problem is relatively straightforward when the geometry of the
opening can be easily described analytically, for example for circular or slit shaped
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openings. As the geometry becomes more complicated, the boundary conditions become
increasingly difficult to handle. To resolve the issue, conformal mapping is used. The idea
is to transform a relatively simple problem with a complicated geometry into a more
complicated problem with a simple geometry. The domain in which the solution is sought
may be called the actual domain and symbolized as w, while the domain with the
simplified geometry used to solve the problem may be called the reference domain and
symbolized as z. A conformal map between the two domains exist, with certain properties,
such as angle preservations, as shown in Figure 10. A conformal map is a function
mapping a geometry to another one while preserving orientation and angles among curves
locally, meaning for example that equipotential lines and flow lines remain normal to
each other after the projection.

w= f(z)

U

Figure 10. Mapping from the reference to the actual domain.

It is assumed that the following conformal maps are known

7= ww) (12)
w= f(2) (13)
Let us denote by

$1@), x1@), P1(2), Xi1(2) (14)

the functions written earlier as
#@), x(@), O), X(z) (15)

and introduce the new notation
dw) = ¢1(2) = p1(ww)), x(w) = x1(2) = x1(w(w)) (16)
Expressing the solution in the w-domain in terms of the solution in the z-domain yields

, ;. dz #1(2)

Oxx + 0y = 4Re[¢'(W)] = 4R [q)](z)a] =4R [fi(z) (17)
Oyy = Oxx + 21‘0—.\‘.\' = 2[W¢”(W) +X,(W)] = (18)
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, _¢7@)f"(@) - ¢1f"@) X @)
Oyy = Oxx t 210’.’(_\' =2 [W l f’(Z)Sl + fl(Z) (19)
09 — Ty + 2079 = [0');\' —Oxt 21-0_.“"']621'6 (20)
The boundary condition that needs to be satisfied then reads
f@) - < T . f .
() + =—=—=¢" () +x1(2) =i fr+ify)ds
$1(z f’(z)¢l ) +x1( (fe+ify) 1)

4.2 Evaluation of the conformal map

Since the aim is to model the evolving geometry of boreholes, it is reasonable to select
an infinite plate with an opening in the form of the unit circle as the reference domain.
Accordingly, the solution is mapped from the exterior of a borehole with breakouts to the
exterior of the circle. z is the domain expressing the exterior of the circle and w is the
domain in which the solution is sought. It is known that w can often be expressed as a
series expansion with respect to z with the form

w= > g™ (22)

n=0
or

w=Rz+ Z an_” (23)

here, for the last equation, it is possible to retain only the double exponents, since the
geometry is expected to be symmetric, both with respect to the vertical and the horizontal
axis. For the sake of generality, all terms are retained in this work.

It should be noted that equation (23) is not truly equivalent to equation (22). Two
assumptions have been made. The first is that the constant term in the series expansion of
equation (22) is equal to zero. As this term only expresses a displacement, there is no loss
in generality in making this assumption. The other assumption that has been tacitly made
is that the imaginary part of the first term is equal to zero. The imaginary part of that term
corresponds to a rigid rotation. The term can as a result be only ignored when one of the
symmetry axes of the actual domain corresponds to the horizontal or to vertical axis in
the reference domain. As there is no loss in generality in assuming that the principal
stresses are horizontal and vertical respectively, the assumption that the coefficient of the
first term of the series is a real number is made here.

The mapping should map the unit circle [z| = 1 on the desired boundary in the w-space. It
is assumed that

z=r-é? w=p-e? (24)
where it should be noted that the arguments # and w do not necessarily coincide.
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We will use here a variant of the method of simultaneous equations, introduced by
Kantorovich (Kantorovich, 1933). The variation is introduced, because we wish to map
the exterior of the actual geometry to the exterior of the unit circle, rather than considering
the interiors. The actual boundary can theoretically be expressed as a real function of the
angle 0 and the same holds for its square. Thus, the curve of the boundary can be
expressed as

wew—Rw)?=w-w-F@ =0 (25)
The function F'(8) can be expressed on approximation as a truncated Fourier series of the
form
k
FO)= ) cpe™ (26)

n=—k
either using a Fast Fourier Transform or a least squares approximation. It should be noted

that while the function R(w) is known, the same is not true of the function F(6). The
relationship between the arguments 6 and w is not known, which in turn means that the
coefficients ¢, are not known.

An approximate mapping of the form

k
W=D m @7
n=0
is sought. The boundary corresponds to the unit circle in the reference domain, meaning

that on the boundary

7= ei(l—n)H (28)
which in turn means that for the boundary the mapping reads
k
wly = Z q”ei(l—n)é? 29)
n=0

Introducing the above in equation (25), one gets
k

k k
Z q"ez(l—n)f? Z qmel(m—l)é) — Z C”emﬁ = (30)

n=0 m=0 n=—k

k k

k
Z Z q”ez(l—n)é)qmel(m—I)H — Z C”emH - G1)

n=0 m=0 n=—k
k

k k
Z Z QHC_]nzei(m_”)e = Z c”einﬁ = (32)

n=0 m=0 n=—k
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k k k k k k
_ b ) ind _ —ind
Z Z Gm—-uGme™” + Z Z Gnn-ve™" = Z cpe™ + Z Cpe™ " (33)

u=0 m=u u=0 n=u n=0 n=1
k k k k k k
~ inf — —inf inf = ,—inf
Z Z qm—anel + Z Z qdm9m-n€ = Z Cpe + Z Cpe (34)
n=0 m=n n=0 m=n n=0 n=1

Equating the terms with the same exponents, yields the_following system of k+1
equations, withn € {0, 1, ..., k}.

k
Z dm—nqm = Cn (35)

m=n

Assuming the complex coefficients to be of the form

qm = Pm t ism (36)
where p,, and s, are real numbers, the above product may be written as
k
Z (pm—n + is"l—ll) (p'” - islll) = CII i (37)
m=n
k
Z (Pm—nPm + Sm—nSm) + i (Sm-nPm = SmPm-n) = Cn = (38)

m=n

k
an:” (Pm*npm + sm»nsm) = ?{Cn

, (39)
Zf‘n:n (Sm-nDm = SmPm-n) = Jen

This method can be applied, when the function F(6) is known, which is generally not the
case. To circumvent the problem, a procedure similar to the one suggested by Fornberg
(Fornberg, 1980) is used here. The N-roots of unity in the z-space are used for the series
expansion, where N is the discretization selected on the boundary. For the first iteration,
it is assumed that the arguments correspond with the ones of the corresponding points in
the w-space, meaning that the following assumption is made
0 = w” (40)

meaning in turn that implicitly the following assumption is made:

F(0) = R*(6) (41)
see also equation (25). In the above equations the superscript stands for the number of
iterations.

Then, the method suggested by Kantorovich (Kantorovich, 1933) with the modifications
suggested here is used and an approximate mapping is evaluated
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k
1 1) Ji(1-n)8
VDI *2)

n=0
The arguments of the points in the w-space are assessed again and the values of the

function F(6) are evaluated again. The procedure is repeated, until a satisfactory fit is
achieved.

It is obvious from the above that the coefficients ¢, of the series need to be evaluated at
each iteration. For their evaluation the system of equation (39) needs to be solved. To this
end the Newton-Raphson method is used. It was observed that large increments in the
coefficients lead to large changes in the arguments, which in turn leads to failure to
converge. To alleviate the problem a relaxation parameter is used for the incrementation

g = gy - (43)
where m is the increment number of the Newton-Raphson, u is its increment and ¢ is the
relaxation parameter.

4.3 Alternative formulation

As an alternative the method suggested by Fornberg is tested (Fornberg, 1980). As this
method was created to map the interior of the unit circle to the interior of the desired
domain, certain modifications are necessary in the present case, where external domains
are considered. This modified version is described here, with little reference to the

original method. Let zk, k = 1, ..., N be the N roots of unity. A discrete Fourier transform
(DFT) yields a mapping
N/2
w(zx) = Z dyz; (44)
v=—N/2+1

from the unit circle on the desired boundary. This function fails to converge at infinity,
due to the terms with v > 1. The goal is to move the points wy along the boundary, so that
the function w(z) becomes a suitable mapping, or, in other words, so that

dy=0forv=2,...,N/2 (45)
The remaining coefficients will yield the desired mapping of the form
N/2-1
W@ = > g (46)

y=—1
The suggested approach consists of inner and outer iterations. The outer iteration is
described first.

The boundary curve £ is assumed to be smooth, simply connected and enclosing the
origin in a complex plane. Since £ is smooth, the true mapping function w(z) can be
represented by a convergent Taylor series as
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W@ = ) g (47)
y=-—1
The following form for the approximate mapping will be used
N/2-1
(=) d” (48)

y=-—1

so that the points x lie monotonically along .£ and represent guesses for the numbers wy.
The above equation can also be written as
N/2-1
=) do™ (49)

v=-—1

with w = exp(27i/N).

The coefficients d, can be evaluated using the inverse DFT:

N-1
1 N N
dy== > G, v=-Z 415
Nkzog"‘” =73 2 (50)

We wish to move these points {x on £ in such a way that d), becomes equal to zero for
v=2,...,N/2—-1 With N free real parameters, we wish to make N/2-1 complex
numbers zero. This count of equations and unknowns appears correct, but we have not
yet prescribed a position to one of the points. It will transpire that the N equations obtained
after linearization will form a system with rank only N-1 (to within truncation errors). We
move the points {x in a two-step process. Given the tangential directions ex (with |ex| = 1
) at the points {x on L we can try to move these points in the tangential directions by

distances fx, in such a way thatd,, v =2,...,N/2 become zero:
N-1
1 N
O=N;)(§k+fkek)w_kv’ V=23 (51)

Afterwards, the points {x + fxex are moved back to the curve L.

By subtracting the last two equations, we get N/2-1 complex linear equations for the N
real unknowns t:

N

e
_ = —kv _ o
d, = NkZ:(:)tkekw s v—2,...,2

Dividing the real and the complex parts of the above linear equations yields N-2
equations. Setting to=0 reduces the number of unknowns to N-1. We are still one equation
short. One option is to set the imaginary part of di to zero.

(52)

Fornberg (Fornberg, 1980) suggests a conjugate gradient method to solve the above
system of equations. Assuming that the tangents e; are known, it would however be
possible to solve the linear system for 7 after separating the real and the imaginary parts.
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Since for the points on the curve the approximation £ is used, for the tangent the
approximation £’ will be used.

Once the real quantities #; have been evaluated the new points {x on the curve are
evaluated.

4.4 Comparison of the two methods

Both methods have been programmed and used on a variety of shapes. It was found that
the method suggested by Fornberg and based of the Fast Fourier Transform is
significantly faster than the method suggested by Kantorovich. The times required by the
Fornberg method were in most cases less than half of the time required by the Kantorovich
method.

On the other hand, the Kantorovich method proved to be much more stable. Even though
it is stated in the original publication that the method will converge only for shapes that
are very close to the circle, it was found that this was rather the case for the Fornberg
method. The method of Kantorovich succeeded in converging to the correct shape over a
much wider variety of shapes and for significantly greater deviations from the circular
shape.

4.5 Examples using the method of Kantorovich

To begin with an example of the procedure of convergence is given. A target shape similar
to that of a borehole with breakouts was chosen and different iterations of the mapping
algorithm were sketched as shown in Figure 11.

Figure 11. Left: iterations of the mapping algorithm and convergence to the final shape.
Right: visualization of the migration of a single point during iterations and change in the
argument.
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The total number of iterations was smaller than 150 and the mapping of the target shape
was achieved with great accuracy. The relaxation parameter was selected equal to 0.02.
This is a small value, a fact that is often necessary for narrow and deep breakouts. On the
left of Figure 11 the result of the mapping at different iterations is shown. The different
lines correspond to the number of iterations given in the legend of the subfigure on the
right. The gradual convergence to the final shape is easy to observe.

For the right subfigure an argument was selected in the reference domain and maintained
constant. The corresponding point in the actual domain is plotted in the figure for the
different iterations. It can be easily observed that the argument in the actual domain varies
according to the mapping and is not necessarily equal to the argument in the reference
domain. This fact renders the successive approximations in the mapping algorithm as well
as the relaxation parameter necessary.

To assess the effectiveness of the code, three different shapes where mapped at different
discretizations. The aim is to illustrate the suitability of the code to map different shapes.
To this end shapes were used that are common in tunneling or for borehole breakouts.
The first is a horse-shoe shaped tunnel, while the other two represent boreholes with dog-
ear shaped and slit-shaped breakouts respectively. The parameters a and B are used to
describe the shape and their meaning for each shape is illustrated in Figure 12.

05 0.5 05
0 0 0

a e
0.5 0.5 a 0.5 a
4 radius = B 1 1

45 1 05 0 05 1 15 "5 4 05 0 05 1 15 "5 4 05 0 05 1 15

Figure 12. Different shapes used for the verification of the effectiveness of the mapping
algorithm. Left: Horse-shoe tunnel. Middle: Dog-ear breakout. Right: Slit-shaped
breakout.

Circular segments for which the radius is not given have a radius equal to one. The
precision for the series coefficients was set to 1078, while the error was defined as the
mean deviation of the resulting curve from the original one. Some results are presented
in Table 1, where k stands for the number of terms in the series approximation, n for the
number of points on the curve and { for the relaxation factor used. The last shape was
found to be the most challenging to fit. The time was measured on a personal computer
on single runs of the code and should therefore be viewed as indicative.
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Some examples are shown in Figure 13. As seen on the left of Figure 13 the quality of
the fit improves with increasing number of series terms, especially where the shape has
angles. As would be expected, the time necessary for the fit increases with increasing
number of terms and increasing number of input point for the curve. A larger value of {
leads to faster convergence but decreases the likelihood for the solution to be reached.
This is especially the case for shapes such as the second and third shape considered here,
which deviate from the circle in a more pronounced manner.

157 157 2
curve
= =n=10

o —n=100 1

curve
15 —fit

05/ 05}
o 0 €

-0.5 -0.5

-1 -1

-1 -1

1.5 -1 -0.5 0 05 1 15 1.5 1 05 0 0.5 1 1.5 -2 -1 0 1 2
Figure 13. Shape fitting with the Kantorovich method. Left: Horse-shoe tunnel. Middle:
Dog-ear breakout. Right: Slit-shaped breakout.

In fact, the second shape fails to converge with a value of { equal to 0.5, but converges
when { is set to 0.1, at an additional cost in terms of time. As may be seen in the middle
of Figure 13, the failure to converge is a result of argument miscalculation. Examples for
a borehole with slit-shaped breakouts are shown on the right of Figure 13 for increasing
depths of the breakout. The fit remains satisfactory but requires a small value of { and
therefore also a larger number of iterations and longer times to converge. It would be
possible to reduce the time required to calculate the mappings for such shapes, which
deviate strongly from the circle, by varying {, selecting a small value for the first iterations
and increasing values for the subsequent ones. This was not attempted here.

Table 1. Conformal map evaluation for different shapes.

Geometry o § n k ¢ Iter. Error Time
[sec]

1 0.5 2.3 512 10 0.5 10 1.6e—04 0.58

1 0.5 2.3 1024 10 0.5 9 1.14e—04 1.42

1 0.5 2.3 512 100 0.5 12 | 2.00e—06 0.87

2 0.4 /6 1024 10 0.5 2 1.3e—03 0.57
2 0.4 /6 1024 | 100 0.5 max | 1.3e—03 24.19

2 0.4 /6 1024 | 100 0.1 53 14.2629¢—05 | 1.77

3 0.4 0.2 1024 | 100 | 0.02 281 | 8.8359e—05]7.79
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0.4 0.2 1024 100 0.01 516 | 8.8260e—05 | 13.30
0.4 0.2 1024 | 200 0.01 275 | 4.1508¢—05 | 17.81
0.6 0.2 1024 | 200 0.01 324 | 6.4821e—05 | 20.74
0.8 0.2 1024 | 200 0.01 384 | 7.2559e—05 | 24.47
1.0 0.4 1024 | 200 0.01 468 | 8.8358e—05 | 29.06

LW (W [L W

On the whole, the algorithm for the evaluation of the conformal maps performs
satisfactorily, even for shapes that deviate significantly from the circle, as shown in Figure
13, where the maximum depth of the slit-shaped breakout is equal to the radius of the
borehole.

4.6 Theory for the stress state estimation

For the evaluation of the stress state the functions ¢1(z) and Xx1(2) need to be evaluated,
as discussed in section 4.1. It is reminded that these functions are defined in the reference
rather than in the actual domain. In the z domain the solution is of the form

$1(2) = Az+ D A" (53)
n=1
and
Xx1(z) = Bz + Z By (54)
n=1
The first derivatives of the above functions read
H@=A+ Y (1-mAT"=A+ a7 (55)
n=1 n=1
and
X,l @)=B+ Z (- n)B,z" = B+ Z bz ™" (56)
n=1 n=1
respectively.

From the boundary condition at infinity, where the stress state should be equal to the
primary in situ stress state, it results that

oy + 0,

and

gy —0p

B = R (58)
where R is the first term of the conformal map, which does not necessarily coincide with
the borehole radius for boreholes with breakouts. 0y is the vertical in plane stress and o7,
is the horizontal in plane stress. This refers to the image representation in this report.
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The constant terms in the series expansions are ignored, as they do not contribute to the
stresses.

The boundary condition at the circle boundary can be derived from the expression

$(x) ¢ 2 7@ f' (@) - ¢1(f" (@)

(f @) + X (z)) (59)

M O TE e f@?

after (Muskhelishvili, 2010) , pp. 193-194.
Alternatively, the following holds

$1(2) + %m +x1(2) =i f (fe+ify)ds (60)

z
In the case of an internal cavity under uniform pressure this yields
f(@) —
() + —=—=¢1(@) +x1(2) = =pof(@) =
#1(z f’(z)¢l 2) + x1(z) = pow = pof(z (61)
F@¢1) + f@)¢]@) + F @1 — pof@f'(2) = 0 (62)

4.7 Least squares approximation for the stress state estimation

For the evaluation of the coefficients of the functions, two options are available. One
possibility is to formulate each of the terms as one power series and then equate the terms
of the same order. This strategy means that the solution will be valid at any point on the
boundary. Particular difficulties are posed however by the positive and negative powers,
which indicate that special treatment is necessary for conjugates.

Another option is to assume a discretization of the boundary and to demand equation (62)
to hold on any point of that discretization. The linear system to be solved will then be
over-constrained and the solution returned will be the answer to the corresponding least
squares problem. This method is more straightforward and was examined first.

Let us consider s points zj, j = 1,..., s on the boundary. The quantities f(z), /'(z;) and
Zj for any are known. The solution is reduced to the linear system

C-x=D (63)
where

_ Alsp, nell,k-1]
*n ‘{ Bown i, nelk2k—2] (64)

Dj = —pof(z))f'(zj) — Ao(f"(z))zj + f(z))) — BoZjf"(z)) (65)
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@y 2, nellk=1]
Cin = { fj’(z ko, ! ne [k, 2k - 2] (66)

To test the implementation, the solution for a crack with half width 1 was compared
against the corresponding analytical solution after (Kachanov, 1994). The external
boundary is unloaded and the interior of the crack is subjected to a uniform pressure of
measure 1. The conformal map should read

1 1
w = 5 (Z + Z) (67)

and is assumed known in this case, so that all possible errors arise with certainty from the
algorithm for the evaluation of the stress state. The stresses are given in Figure 14. The
filled graph corresponds to the analytical solution for the crack, while the red lines give
the corresponding isolines of the numerical solution. The top row shows the results for
16 and the bottom row for 26 interpolation terms. Subfigures (a) and (d) show oy,
subfigures (b) and (e) show 0 xy and subfigures (c) and (f) show oyy.

Figure 14. Results of the least squares approximation for a crack. The filled graph
corresponds to the analytical solution for the crack, while the red lines give the
corresponding isolines of the numerical solution.

The results of the top row, corresponding to the solution with 16 series terms, do not
exactly coincide with the analytical solution, but are rather close to it. The results of the
bottom row on the other hand show a large quantity of oscillations and are much further
from the analytical solution than the interpolation with 16 terms. The same phenomenon
is observed in Figure 15, where the values of the series coefficients are plotted for the
same two cases. The approximation using less terms shows a regular response with the
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coefficients of higher order terms mostly decreasing. The approximation using 26 terms
on the other hand shows scattering which becomes more significant as the order of the
terms increases. This indicates that the minimum recovered with a least squares
approximation is not necessarily unique and does not need to correspond to the actual
solution. In view of this the semi-analytical approach is examined next.

1

o
o o 4’)1 10 -
o o @
0.8 N o x, 1
oo o X4
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0.6 ° e
0© o o
o a ©
o o o oo o
0.4 0 oaeogguggn s %% DDDDDD
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0.2 o . oo
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0 5 10 15 20 0 5 10 15 20 25 30

Figure 15. Series coefficients for the functions ¢ and xi. Left: for 16 terms. Right: For
26 terms.

4.8 Semi-analytical method for the stress state estimation

In the equation expressing the boundary condition, equation (62), each of the terms will
be expressed as a power series in what follows. Use will be made of the fact that

i0
z=¢e (68)
since we are referring to the unit circle. The coefficients of the mapping are known, as
are the first coefficients of the functions ¢ and x1. Make use of the power series and the
boundary condition it results that

F @91 + f@)¢,2) + F @1 — pof@)f' @) =0 = (69)

F@¢1(2)
+ [ ()
+ i@ (70)
- pof@f' (@)

= 0=
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The above can be solved numerically by equating the exponents of equal order. It results
in a linear system of 3k-1 equations, or, separating the real from the imaginary parts, 6k-
2 equations. The unknowns are 2(k-1) complex coefficients or, equivalently, 4(k-1) real
ones. This means that the system is over-constrained, so that the solution to the
corresponding least squares problem is evaluated and provides the coefficients of the
functions ¢; and xi. Alternatively, it would have been possible to evaluate the series to
more than k+1 terms. It is selected here to use the same order of approximation for the
mapping and for the functions ¢, and x1.

Figure 16. Quasi-analytical approximation results for 26 terms. The filled graph
corresponds to the analytical solution for the crack, while the red lines give the
corresponding isolines of the numerical solution.
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This method does not result in the spurious oscillations observed in the previous case.
Increasing number of terms yields increasingly precise approximations of the analytical
results. The result in comparison with the analytical solution for a crack with half-length
equal to 1 after (Kachanov, 1994) is given in Figure 16. As before the filled areas
correspond to the analytical and the isolines to the numerical solution and the stresses
depicted are from left to right oy, 0xy and 07yy. As may be observed, the agreement is
excellent.

4.9 Examples of the stress state estimation

In this section some examples of the results of the algorithm for the stress estimation are
presented and the code is validated against analytical solutions and compared to finite
element results.

Since the above analytical solution only validates the part linked to the internal pressure,
the Kirsch solution for circular openings under biaxial stress and an analytical solution
for an elliptical opening under uniaxial far stress field from (Muskhelishvili, 2010) is used
to validate the evaluation of the stress distribution resulting from the primary stresses.

For the Kirsch solution a horizontal stress of 1 MPa and a vertical stress of 3 MPa are
assumed. A series approximation with 20 terms was used. The results are shown in Figure
17. As may be seen, the absolute error is very small and concentrated around the opening
in the form of oscillations. The accuracy is close to the machine precision.

~

&

10 2 0 2 4 0™ 2 0 2 I

Figure 17. Absolute error of the computed solution with respect to the Kirsch solution.
From left to right: oy, 07xy and oryy.

The solution tested next was that of an ellipse with the expression

m
w=R (z + ;) (76)
with m=0.5. The domain is subjected to far-field horizontal stress with a magnitude of 1
MPa and no vertical stress. 50 terms were used for the approximation. The mapping was

evaluated using the algorithm of the previous section and the result was used for the
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evaluation of the stress field. The computed solution was compared to the analytical one
provided by (Muskhelishvili, 2010) and the absolute error is plotted in Figure 18. As may
be observed, the absolute error, which is again concentrated in the vicinity of the opening
and shows oscillations, remains at all times smaller than 10”7. The same problem was also
tackled using an approximation with 20 terms. In this case the maximum absolute error
was of the order of 1072,

& & b v © N & o

3

4 2 0 2 4 x10°®

Figure 18. Absolute error of the computed solution with respect to the solution after
(Muskhelishvili, 2010).

In Table 2 the maximum error for different shapes of ellipses and for different numbers
of terms used for the mapping is shown. m is the parameter present in equation (76), n is
the number of discretization points on the boundary and k is the number of terms used for
the approximation. Three different times were measured. Time 1 stands for the whole
procedure, including the evaluation of the mapping numerically, as well as the evaluation
of the analytical solution for comparison. Time 2 stands for the evaluation of the
coefficients of the functions ¢; and yi. Finally, time 3 stands for the evaluation of the
stress state, consisting of the summation of the power series required to evaluate the
derivatives of the functions ¢; and xi. The first observation to be made is that the
maximum error decreases with increasing number of terms as one would expect. It stops
decreasing after a certain number of terms, that depends on the shape.

Table 2. Stress state accuracy for different ellipses and different numbers of terms.

m n k Max. error | Time 1 Time 2 Time 3
[sec] [sec] [sec]
0.2 1024 25 3.3674e—06 | 1.974315 | 0.022092 1.956998
0.2 1024 50 3.3536e—06 | 3.324643 | 0.012865 | 3.302847
0.2 1024 100 | 3.3536e—06 | 6.444014 | 0.026391 6.429781
0.4 1024 25 1.7587e—04 | 1.744714 | 0.008909 1.729890
0.4 1024 50 6.5545e—06 | 3.300635 | 0.010736 | 3.286997
0.4 1024 100 | 6.5587e¢—06 | 6.506391 | 0.022210 | 6.492972
0.6 1024 25 6.9891e—02 | 1.717243 | 0.010161 1.717243
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0.6 1024 50 | 2.8072¢—05 | 3.278999 | 0.010476 | 3. 264389
0.6 1024 100 ] 9.0391e—09 | 6.677930 | 0.023379 | 6.663668
0.8 2048 25 2.3687¢+00 | 3.544546 | 0.009983 | 3.519414
0.8 2048 50 19.4072e—01 | 6.712898 | 0.012182 | 6.686189
0.8 2048 100 | 5.1216e—03 | 13.97138 | 0.026864 | 13.94268

The times were measured at single execution on a personal computer and should thus be
considered indicative. Even so, it is clear that the time of execution increases with
increasing number of terms and with finer discretizations. Another observation that can
be made is that the time required for the evaluation of the series coefficients of the stress
functions is only a small fraction of the whole. The largest part of the required time is
used for series summation. On the whole, it may be concluded that the method introduced
here provides a good approximation of the stress state around openings of an arbitrary
shape.

As a next step a comparison of the computed stress state around the borehole by the
conformal mapping method and finite element analysis is presented. Three stages of the
breakout development are simulated in order to compute the stress redistribution around
the borehole. As an exact analytical solution for the mapping does not exist in this case
both the mapping algorithm and the algorithm for the stress determination are used. As
no analytical solution exists for the stress state, the results of the conformal mapping
method are validated against the FEM simulations.

For the FEM simulations the commercial software PLAXIS 2D is utilized. The geometry
for the three different simulations (immediately after the drilling of the borehole, when
half the depth of the breakout is developed and when the breakout is fully developed) is
input-based, so that the elastic solution for the stress state around the borehole and the
breakout is directly compared for the two methods based on the same problem geometry.

In the FEM simulations the problem is analyzed as plane strain. However, since in
conformal mapping the effect of the out-of-plane stress is not taken into account in this
work, a linear elastic constitutive law is used with zero Poisson's ratio (v=0). The Young's
modulus is set to 15 GPa, even though it does not influence the solution for the major and
minor principal stress components. A rectangular domain is used with the geometry of
the borehole and borehole breakout in the center. Zero displacement boundaries are
placed 100 radii away from the borehole, both in the vertical and the horizontal axis, to
ensure that the boundary has no effect on the solution (infinite medium). The mesh is
refined around the borehole until the solution for the two principal stress components is
not influenced by the discretization. 15-noded triangular elements are used in Plaxis 2D.

The results of the simulations as far as the major principal stress component is concerned
are presented in Figure 19, for the three stages. The left column (a, ¢ and e) shows the
results of the finite elements simulations, while the right column (b, d and f) shows the
results of the algorithms discussed above. The results of the conformal mapping method
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are in very good agreement with the FEM simulations and give confidence for the
applicability of this semi-analytical method both for solution of the direct problem and
for the in-situ stress state assessment that is presented in what follows.
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Figure 19. Comparison of FEM and conformal mapping results. The left column (a, ¢
and e) shows the results of the finite elements simulations, while the right column (b, d
and f) shows the results of conformal mapping for the same shapes.
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S. BREAKOUT GEOMETRY EVALUATION

In this chapter the evaluation of the final geometry of a borehole after the formation of
breakouts is presented and discussed. The outline of the code used is given below:

initialize the borehole boundary
discretize the domain
while (new surface > Tol)
evaluate the stress state using conformal mapping
evaluate the yield function
remove the area formed that yielded
discretize the new borehole boundary

end

5.1 Oscillation propagation and smoothing

In this section certain points regarding aspects of the implementation other than the
conformal mapping are discussed. A significant point concerns spurious oscillation of the
solution in the vicinity of the opening.

0.3 02 -
\ 12
0.25 %
1
0.15
0.2 0
0.15 -—-iter. 2 0.1 -1
—iter. 3 )
oqb AN LT initial
0.05 -3
0.05 4
0 -5

1 1.06

Figure 20. Numerical oscillations. Left: Boundary after successive iterations. Right:
Boundary smoothing.

As shown on the left Figure 20, small oscillations that are not visible in the first iteration
propagate and increase in amplitude. This is a result of the evolution of the boundary
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shape. Small oscillations present in one iteration mean that the boundary of the next
iteration exhibits grooves and peaks, which result in stress concentrations that are not
present in reality. Such oscillations become more pronounced as the number of terms used
for the series expansion expressing the stress functions increases. As decreasing the
number of terms of the series expansions however is not practicable beyond a certain
point, as it also reduces accuracy, it was selected to use smoothing in the form of a moving
average. An example is shown on the right of Figure 20, where the original curve is shown
in blue and the smoothed curve is shown in red. It can also be seen that the blue, original,
curve shows stepwise variations in its direction. These are a result of the discretization.

Another feature that can be observed is the formation of areas where the criterion for
failure is satisfied, but that are located at the interior of the material. It was selected here
to ignore such closed curves. They can however just as easily be included.

5.2 Problem position

The outline of the problem considered is presented in Figure 21.

oHl
A

—» p <« sin(®)

N

f ) "

Figure 21. Problem outline. Left: Problem geometry. Right: Failure criterion.

The geometry is shown on the left of Figure 21. The initial borehole radius is set equal to
one. This is equivalent to normalizing all length units with the borehole radius. Strictly
speaking this is not necessary, as all parts of the method developed here can work with
any other size. In the specific case however, there is no loss in generality, as the failure
criterion and material response are not scale dependent. The maximum principal stress
considered, oy, is assumed to act in the vertical direction, while the minimum principal
stress, 0p, is assumed to act in the horizontal one. It should be remarked here that rotating
the stress state would simply rotate the results by the same angle and in the same direction.
Thus, the orientation of the breakouts is the same as one of the principal directions of the
in situ stress, in accordance to what has been observed in the field and in the laboratory.
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Table 3. Strength parameters.

o, [MPa] ¢ [MPa] ¢ [°] pe [MPa]
6.0 15.0 55 200

The assumed failure criterion is shown on the right of Figure 21. A multi-surface failure
criterion (see Figure 21 on the right) was used to render it easy to distinguish between the
different modes of failure. A tension cut-off criterion was assumed for tensile failure with
a tensile strength of ot (in blue on the right of Figure 21), a Mohr-Coulomb criterion for
shear failure with a cohesion of ¢ and a friction angle of ¢ (in red on the right of Figure
21) and a circular segment with a radius of pc for compaction failure (in green on the right
of Figure 21). In all cases arbitrary values were selected for the strength. The values
selected for the tensile and shear strength were chosen close to those measured for
different types of granite by (Arzua & Alejano, 2013). The values used are given in Table
3. Each mode of failure is discussed separately in what follows.

5.3 Shear failure

In Figure 22 three examples of results are given.

8] 05 0 05 1 -1 05 0 05 1 -1 05 0 05 1

Figure 22. Shear induced breakouts, 0,=20 MPa. Left: oy = 40 MPa. Middle: oy =45
MPa. Right: 05 = 50 MPa.

The minimum principal stress is set to 20 MPa and maintained constant, while the
maximum principal stress ranges from 40 to 50 MPa. The change in both width and depth
of the breakouts is easy to note. The different lines in each figure correspond to successive
iterations of the code. On the left of Figure 22 they are not visible due to very fine spacing.

A common reason for simulating borehole breakouts is the assessment of the in situ stress
state. As a rule, based on analytical solutions, only the width can be used, resulting in a
linear relationship between the principal stresses, rather than in a value for each of the
stresses. Based on the Kirsch solution, the circumferential stress at the wall of the
borehole is given by
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g9 = (O + 0p) + 2(0H — o) cos(26) (77

Failure takes place when the uniaxial strength is exceeded. Given that, based on
observations, the width of the breakout remains constant for constant far field stress while
its depth increases, a number of different stress states will result in breakouts with the
same width but with different depths. Solving the above for the maximum principal stress
yields
o = g — (1 = 2cos(20))op, (78)
1 + 2 cos(26)

Substituting the circumferential stress with the uniaxial strength and the angle ¢ with a
selected value yields the locus of stress states resulting in the same width of shear induced
breakout. A value of 40° was arbitrarily chosen here and four different stress states were
evaluated. They are given in Table 4.

Table 4. Stress states shown in Figure 23.

o [MPa] c [MPa] ¢ [°] pe [MPa]
6.0 15.0 55 200

o, IMPa]

a, [MPa]

Figure 23. Effect of the stress state on the breakout depth. Left: Breakout shape. Right:
Stress state and breakout depth.

The result is shown in Figure 23. On the left of Figure 23 the final shapes of the borehole
for four different stress states. The numbers in the legend correspond to the enumerated
stress states in Table 5. The initial shape is also provided as reference. As may be seen,
the width is the same in all cases, but the depth differs. On the right of Figure 23 the
maximum principal stress and the breakout depth are plotted as functions of the minimum
principal stress. The corresponding vertical axes are located at the left and the right of the
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figure, respectively. It is clear that the variation of the breakout depth is nonlinear but has
a one to one correspondence to the maximum principal stress.

Table 5. Stress states illustrated in Figure 23.

number 1 3 5 7
O H [MPa] 30 35 40 45
01 [MPa] 56.09 53.67 51.24 48.82

On the whole the results for shear failure are satisfactory and encourage the possibility
of using a formulation such as the one suggested here for the assessment of the in situ
stress state on the basis of the shape of borehole breakouts.

5.4 Tensile failure

Two different primary stress states were considered to test the simulation of tension
induced failure.

A 0 1 2 2 - 0 1

Figure 24. Tension induced breakouts (tensile cracks). Left: oy =40 MPa, o, = 10
MPa. Middle: oy = 20 MPa, 0, = 2 MPa. Right: Alternative geometry.

In the absence of internal pressure, tensile stresses appear only if the stress ratio is larger
than 3 or smaller than 1/3. The stress states were selected accordingly to ensure that a
tensile breakout occurs. For the first of the two, shown on the left of Figure 24, it can be
observed that both shear induced and tension induced failure take place. Simultaneous
occurrence and propagation of breakouts at different locations of the borehole wall pose
no difficulties for the implementation.

To investigate more easily the tensile failure mode only, the tension cut off criterion was
the only one considered for the next simulation. To test the robustness of the
implementations a somewhat extreme stress state was selected with a ratio of maximum
to minimum principal stress equal to ten. The result is shown in the middle of Figure 24.
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While the simulation converges, the breakout shape differs from the slit shaped breakout
known from observations.

The borehole with a narrow breakout shown on the right Figure 24 in red and much closer
to the typical shape known from observations, was tested under the same stress state. The
width was selected small, at 0.1, and the depth was selected equal to the final depth of the
breakout shown in the middle of Figure 24. No failure was found to take place for this
shape. This indicates that the code either estimates correctly or overestimates the depth
of the tensile breakout.

The origin of the discrepancy in shape may be a result of the selection of the failure
criterion, but most likely stems from the fact that in the present work the stress disturbance
due to the creation of the borehole was assumed to take place instantaneously.

For tensile failure, where the width of the breakout is known to be extremely small, an
analytical evaluation of the conformal map would be more suitable. This can be easily
calculated using first a projection from the shape of the borehole with a slit-shaped
breakout to a slit and subsequently from the slit to the unit circle.

5.5 Compaction failure

Failure due to compaction was investigated next, activating only the part of the yield
surface that is linked the compaction induced failure (marked in green on the right of
Figure 21).

2 7
1 .6
‘@
o
©
o5
g S
F =
o
o
a
1 4
2 3
5 1 0 1 5 0 2 4 6 8 10 12

no. of iterations [-]

Figure 25. Compaction induced breakouts. Left: Breakout propagation. Right: Borehole
surface.

It was found that the width of the breakout remains constant in this case as well, while
the depth increases. In contrast to the results of the previous subsections, the area of
material failing at each iteration was found to increase and the propagation of the breakout
showed no signs of coming to a stop. An example is shown in Figure 25, where the
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minimum principal stress was equal to 90 MPa, while the maximum principal stress was
equal to 125 MPa.

On the left of Figure 25 the evaluated shape of the borehole after successive iterations is
shown. While the shape is consistent with the one known from observation, it is clear that
the propagation shows no signs of halting. On the right of Figure 25 the surface of the
borehole cross-section (normalized by the square of the borehole radius) is shown as a
function of the iterations. The rate of change of the surface seems to be increasing, so that
it is obvious that no equilibrium will be reached.

This result may be due to the fact that the material in the present work was considered
elastic-perfectly brittle, excluding the possibility of plastic hardening. Another reason for
the results observed may be the fact that the out of plane stress was not considered in the
calculations in this case. This factor is discussed in what follows.

5.6 Some remarks

As was shown above, different modes of failure can be simulated, even when taking place
at the same time. The proposed method can also capture the breakout depth variation for
stress states that are characterized by the same breakout width. This suggests that it could
provide a valuable tool for the determination of the in situ stress state on the basis of the
shape of the observed borehole breakouts, making use of both width and depth, in contrast
to current practice.

The breakouts resulting from tensile failure simulated here were found to be inconsistent
in shape with in situ observations. The calculated depth however was shown to be, if not
accurate, erring on the safe side. Possible grounds for the discrepancy may be the
selection of failure criterion or the instantaneous unloading assumed in the present work.
An analytical calculation of the conformal map can provide the slit-shaped breakouts
known from observation.

The implementation presented here presents a significant limitation in that it takes into
account only the in plane stresses. The out of plane stress is known to affect the shape of
borehole breakouts and the fact that it has not been taken into account in the present work
may explain the apparently infinite propagation of compaction induced breakouts
observed here. The result may however also be due to the fact that no plastic hardening
was considered, as the formulation was developed for the elastic- perfectly brittle
materials.

On the whole it can be concluded that the methodology presented here provides a
promising tool for the simulation of borehole breakouts in brittle materials.
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5.7 Effect of the out of plane stress

The effect of the out of plane stress can be incorporated with relative ease into the
algorithm, by means of using a failure criterion that takes into account all three principal
stresses. For the evaluation of the out of plane stress the plane strain assumption is used.
Since the out of plane strain needs to be zero and the changes in the in plane stresses are
known, the Poisson’s ratio can be used to evaluate the new value of the out of plane stress.
Two calibrations are performed, one under the assumption that the out of plane stress has
no significant effect on the material response and one under the assumption that the out
of plane stress is as important as the in-plane stresses.
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Figure 26. Effect of intermediate stress on the failure envelope (Song, 1998).

In reality the real material response lies somewhere in between, as measured and
discussed by Song (Song, 1998). An example of the effect of the intermediate stress on
the failure envelope is shown in Figure 26 from polyaxial tests. As can be seen, the
strength more than doubles when a triaxial rather than a practically biaxial stress state is
considered. The case where the out of plane stress is ignored will be denoted as biaxial
stress, while the case where the out of plane stress is considered as important as the in-
plane stresses will be denoted as triaxial stress.

For brittle failure ignoring the intermediate stress the Hoek-Brown criterion (Hoek &
Brown, 1980) was used. It is expressed in terms of principal stresses and is restricted to
two dimensions. It reads
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a2
ol =02+ 0y Jm,‘—+ 1 (79)
o-“

where o, is the uniaxial compressive strength of the material and m; is a parameter usually
very close to the ratio of the uniaxial compressive strength to the tensile strength.

Two material parameter sets were considered, based on experimental results from triaxial
tests on sandstones, of which the first set shows a lower cohesion and a higher friction
angle, when compared to the second one. The uniaxial strength was determined
experimentally and was found to be equal to 92 MPa for the first case and 99 MPa for the
second case. The parameter m; was determined on the basis of the best fit with
experimental results from Brazilian, uniaxial and triaxial tests. The experimental results
from Brazilian, uniaxial and triaxial tests, along with the best fit, are shown in Figure 27.
The resulting parameters are given in Table 6.

Table 6. Material properties for failure assuming a biaxial stress state.

ou [MPa] | mi[-] o: [MPa]
92 28 3.3
99 8 3.3
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Figure 27. Calibration for the biaxial stress assumption.

For failure accounting for the intermediate stress a different criterion was used
(Gerolymatou, 2017). The yield surface has the form
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f=q*+M*h(p)(p - p)(p - pe)
where

p= étrﬂz)

3
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=]

(80)

(81)

(82)

(83)

The constants were evaluated by fitting the experimental results, as seen in Figure 28.
The values of each of the constants are given in Table 7. Differences between extension
and compression are ignored, as no experimental information is available. Since both
criteria are excellent fits of the experimental data, their main difference lies in the

consideration of the out of plane stress.

Table 7. Material properties for failure assuming a triaxial stress state.

pr[MPa] | pc[MPa] al-] Bl M{-]
92 3.3 1.0 0.35 3.0
99 33 1.0 0.5 2.0
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Figure 28. Calibration for the triaxial stress assumption.
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5.7.1 First set of material parameters, biaxial stress

Shear failure can take place when the horizontal primary stress is larger than the vertical
one, assuming the directions shown in the figures that follow. The vertical stress is
maintained equal to 34 MPa and a parametric analysis is performed with respect to the
horizontal stress.

The results are shown in Figure 29. On the left the shape of the borehole breakouts for
different horizontal stresses is given. As may be observed, both the width and the depth
increase with increasing horizontal stress, with the depth increasing however significantly
faster than the width. On the right the depth is shown as a function of the horizontal stress.
The increase seems to be exponential after an initial quasi linear response, though this is
only supported by the last point.
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Figure 29. Shape of borehole breakouts (left) and depth of breakouts (right) for different
horizontal stresses.

5.7.2 First set of material parameters, triaxial stress
For this set of simulations in addition to the calibrated model parameters, which are given
in Table 7, the Poisson’s ratio is needed. A value of 0.2 is used here, lying within the
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range of reasonable values for an intact rock. The out of plane stress was set equal to the
vertical one, namely 34 MPa. The results are shown in Figure 30 below.

0.2
1 O shear breakout
@ tensile crack o
0.15
05 _—
=
4 =1 0.1 -
3 S
05 0.05 .
a
L
-1 00 O '
116 121 126 130
145 4 05 0 0.5 1 15 oy, [MPa]

Figure 30. Shape of borehole breakouts (left) and depth of breakouts (right) for different
horizontal stresses.

The formation of tensile cracks starts earlier than the formation of shear breakouts.
However, with increasing horizontal stress the depth of the shear breakouts increases
significantly, while the depth of the tensile cracks does not increase at the same rate.
Breakouts are only observed from horizontal stresses equal to 118 MPa, a value that is
high and corresponds to a stress ratio of almost 4.

5.7.3 Second set of material parameters, biaxial stress
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Figure 31. Shape of borehole breakouts (left) and depth of breakouts (right) for different
horizontal stresses.

The procedure is repeated for the second set of material. The assumption of biaxial stress
is tested first. The results are shown in Figure 31. As far as the shape is concerned, it can
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be observed that the results are similar to the ones for the previous material. The formation
of the breakouts starts at a higher horizontal stress compared to the first material but
increases at a higher rate with increasing horizontal stress. On the right of the same figure
the depths of the borehole breakouts are compared for the two materials as a function of
the in plane horizontal stress.

5.7.4 Second set of material parameters, triaxial stress

The results for the second material parameter set are evaluated next under the assumption
of triaxial stress state. The results are shown in Figure 32. As was the case before, it can
be observed that the breakout formation starts at much higher stress levels than before,
something that was the case also for the first set of material parameters. It is also
interesting to note that in this case, as well as in all previous cases, the breakout depth is
a hyper-linear function of the maximum principal stress, independently of which failure
criterion is used.
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Figure 32. Shape of borehole breakouts (left) and depth of breakouts (right) for different
horizontal stresses.

5.7.5 Remarks

From the results of the previous sections it is clear that the consideration of the triaxial
stress state results in smaller breakouts. This is also obvious from the very different stress
state required to induce the appearance of breakouts, as can be observed from the figure
legends. When comparing Figure 29 and Figure 31 to Figure 30 and Figure 32 it is also
clear that the first two are similar to each other, while Figure 30 and Figure 32 present
several differences. This is due on the one hand to the different stress states used in the
simulations, as made clear from the legends of the figures, but also due to the difference
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in the material parameters: while the material response is similar for lower stresses, it
diverges for higher confining pressures, as illustrated in Figure 28.

On the whole, it seems that the consideration of the out of plane stress results in smaller
breakouts by comparing the results presented in Figure 29 to Figure 32. When considering
the inverse problem, meaning the evaluation of the in sifu stress state on the basis of the
breakout shape, this means that the commonly made assumption, that only the in plane
stresses affect the breakout formation, results in smaller in situ stresses than the triaxial
stress assumption. This is so because the triaxial stress assumption predicts smaller
breakouts than the biaxial stress assumption. This means that, for the same breakout
shape, the triaxial stress assumption will result in higher stresses than the biaxial stress
assumption. It should also be noted that the biaxial stress assumption underestimates the
material strength, thus erring on the side of caution and predicting breakouts that are too
large, while the triaxial stress assumption errs in the other direction. The reality lies
between the two assumptions, as suggested by the results illustrated in Figure 26.
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6. SCALE EFFECTS

In this chapter the scale dependence of the material response is introduced. Some
modifications are made in the numerical procedure and the scale effects are introduced
after calibration on experimental results.

6.1 Code modifications

To resolve the issue of the spurious oscillations discussed in the previous chapter, which
is a numerical one, in the previously used version a smoothing of the boundary was used
with an averaging technique. The degree of smoothing was however found to affect the
results to some degree. It was chosen here therefore to substitute the smoothing with a
polynomial interpolation. An example of the results of the successive iterations is shown
on the left of Figure 33. The formed breakout is of the cusp type. The corresponding
polynomial interpolation is shown on the right of Figure 33 for a polynomial degree of 5.
The interpolation is marked in black, while the original points are marked in red. The
agreement between original data and interpolation is good. The results remained the same
for polynomial degrees ranging from 3 to 8. A polynomial interpolation of the fifth order
is used for subsequent simulations in the present work, unless otherwise stated.
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Figure 33. Example of breakout propagation prediction. Left: Breakout propagation.
Right: Interpolation.

It was found that using the new approach developed here the breakouts in many cases
tend to advance indefinitely as far as the depth is concerned, even if the width remained
constant. This phenomenon is known from previous works using methods based on
elasticity (Cheatham, 1993; Herrick & Haimson, 1994; P. G. van der Hoek, Smit, &
Khodaverdian, 1994). The discrepancy with experimental results is related to the reasons
for breakout arrest that were discussed before, namely local plastic response of the host
rock, the formation of a process zone or scale effects. It is worth noting that all may be
different aspects of the same phenomenon.
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For a more thorough explanation of the mechanism leading to continuing breakout
propagation, the value of the yield function was plotted as a function of the normalized
horizontal coordinate, over a line on the x-axis, for each successive iteration of breakout
formation. The result is shown in Figure 34. The arrow indicates the direction of
increasing iterations. As may be seen, in the beginning the curve is monotonic, with a
gradual decrease. As the breakout propagates, the maximum value of the yield function
becomes larger, while its gradient also becomes larger. For later iterations the gradient
becomes very pronounced and a local minimum appears. The value of the yield surface
changes drastically within a very small area. A plastic rather than brittle response of this
area would lead to a very different response and probably arrest the advance.
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Figure 34. Evolution of the value of the yield function with successive iterations. The
values were measured along the line y=0 for positive values of the horizontal
coordinate.

6.2 Incorporation of scale effects

As the failure propagates and the breakout becomes deeper, the width of the area that fails
becomes smaller. This is akin to the buckling of pillars of ever-decreasing height: the
smaller height is linked to size effects, meaning that the load required to reach failure
becomes progressively higher. Such scale effects have been observed also in laboratory
tests on boreholes, as shown for example in Figure 5.

To incorporate scale effects the results on Alabama limestone by (Herrick & Haimson,
1994) were used. The normalized tangential stress at which failure was first observed is
plotted over the hole radius in Figure 35. The stress is normalized with the uniaxial
strength of the material. The fit is given by the equation

y = max(—1.31n(x/85),1) (84)
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Figure 35. Normalized tangential stress at failure as a function of the borehole radius.
Data from Alabama limestone after (Herrick & Haimson, 1994). The fit is given by
equation (84).

It should be noted that this is only one of the many options available. It must also be
remarked that the cut-off at a value equal to unity is not relevant for the present case, as
all experimental points correspond to radii of 11 mm or smaller.

6.3 Comparison to experiments

The semi-analytical method based on conformal mapping is used to simulate experiments
performed in the literature on borehole breakout development. The Mohr-Coulomb
failure criterion is used to pinpoint the areas that yield during the breakout development.
It requires two material properties, i.e. the friction angle ¢ and cohesion ¢ that are
calibrated based on experimental results. It reads

[ =g —sin(¢)p — 2c cos(§) (85)
where in terms of principal stresses
o] +o
p=—F (86)
and
_ o1 —02
9= =5 (87)

# is the friction angle and c is the cohesion of the material. The simulated experiments
were performed on Alabama limestone and their results are published in (Herrick &
Haimson, 1994). For the friction angle a value of 18° was used in accordance to the
measurements by (Herrick & Haimson, 1994). The cohesion was calculated as 14 MPa
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using the value of the uniaxial compressive strength provided by (Herrick & Haimson,
1994) and the Mohr-Coulomb failure criterion for minimum principal stress equal to zero.

The size effect (as explained in the previous section) is incorporated in the cohesion used
in the Mohr-Coulomb failure criterion. For each successive iteration a polynomial fit of
the second degree was fitted to the new part of the borehole boundary. The curvature of
this polynomial -corresponding on approximation to the curvature of the tip of the
breakout- was used to evaluate the equivalent radius. The equivalent radius was
subsequently used to evaluate the strength for the next iteration by modifying the cohesion
in accordance with the experimental data on Alabama limestone and the fit given in
equation (84). An example of the results is shown in Figure 36. As expected, the width
remains constant, while the depth increases up to the point of arrest. The failure surfaces
of the successive iterations, delimited in the figure with black lines, become gradually
smaller. The overall shape is slightly reminiscent of cusp borehole breakouts, though not
far from dog-ear shaped ones.
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Figure 36. Example of the final shape of the borehole breakout, showing the intermediate
shapes for all iterations. As may be observed, the width remains constant, while the depth
increases. The overall shape is slightly reminiscent of a cusp.

The first test series by Herrick and Haimson (Herrick & Haimson, 1994) was used for the
comparison. Prismatic specimens with a side length of 13 cm in the horizontal and 17 cm
in the vertical direction were loaded with the principal stresses in the horizontal and
vertical directions. The maximum and the minimum principal stresses were horizontal. A
borehole with a radius on 1.1 cm was drilled under load in the vertical direction and the
breakout dimensions measured. The aperture angle and the normalized depth were
registered, see Figure 36. For the first test series the minimum principal stress was equal
to 14 MPa, the vertical stress was equal to 21 MPa and the maximum principal stress
varied between 40 and 67 MPa.
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Figure 37. Numerical simulation of borehole breakout development and comparison to
experimental results in Alabama limestone. Experimental data after Herrick and
Haimson (Herrick & Haimson, 1994). Left: Aperture angle. Right: Normalized depth.

The comparison of the numerical to the experimental results is shown in Figure 37. It
should be remarked that, since the breakout width does not increase, the aperture is
determined by the Kirsch solution and, of course, the failure criterion. The agreement
between numerical and experimental results is rather good, both concerning the aperture
angle and the normalized depth, with the exception of the point corresponding to the
smallest maximum principal stress. In this case both breakout angle and depth are
underestimated. The agreement between experimental and numerical results concerning
the depth is particularly good, considering that, since the borehole radius was equal to 1.1
cm, a step of 0.1 in the normalized depth corresponds to a little more than one mm. This
agreement indicates that the approach is suitable for the realistic prediction of the shape
of borehole breakouts, at least when scale effects are incorporated.
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7. IN SITU STRESS ASSESSMENT

In this section the inverse problem is considered, namely the evaluation of the stress state
based on the geometry of the breakouts, at least when the breakouts are shear induced.
The current common practice for the use of borehole breakouts for the assessment of the
in situ stress state is outlined in Figure 38.
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Figure 38. Example of the standard use of borehole breakouts for the estimation of the
in situ stress state. Based on global failure, the stress state is limited to the interior of the
blue polygon. Based on the width of the borehole breakout it is limited to the magenta
line.

The Mohr-Coulomb failure criterion with the parameters of Alabama limestone was used,
namely a friction angle of 18° and a cohesion of 14 MPa. The vertical stress was assumed
to be known and equal to 80 MPa. Commonly in practice the vertical stress is evaluated
from the overburden. It is reasoned that the in situ stress state cannot be beyond the yield
locus of the material. For different assumptions concerning which of the three principal
stresses is the maximum and which is the minimum principal stress, different limiting
conditions are attained. From them it results that the primary in situ stress must be within
the polygon marked in blue in Figure 38. From the Kirsch solution for the circular cross-
section of the borehole under the assumption of plane strain state, it results that at the wall
of the borehole

_ e — (1 —2cos(20))a
oH = I +2cos(20) (88)
where O is the angular coordinate. Setting 20 equal to the borehole aperture 6 results in
Oy — (1 - 2605(9))0—/1

TH = 1 + 2 cos(6) (89)
where o, is the uniaxial compressive strength of the material, when ignoring the out of
plane stress. The above equation for an aperture of 80° results in the black dotted line of
the diagram in Figure 38. Combining with the polygon, it results that the stress state must
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lie on the magenta line of the same diagram. A more detailed description may be found
in (Zoback et al., 2003). In what follows it will be assessed whether the depth of the
breakout can be used in conjunction with its width to further limit the domain of possible
stress states, using the conformal mapping methodology presented in the previous chapter
for the solution of the direct problem.

7.1 Numerical method for stress assessment

A modified version of the iterative bisection method in conjunction with the conformal
mapping algorithm are used to estimate the in situ minimum o, and maximum oy
principal horizontal stress components, based on the measured width and depth of the
borehole breakout and the strength of the material.
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Figure 39. Example of the method for the estimation of the in situ stress state. Left: Points
a and b are the depths corresponding to the minimum and maximum estimate of the
minimum principal stress. The horizontal line is the target depth and point ¢ results from
linear interpolation. The corresponding maximum principal stress is at point d and the
breakout depth at point e. Points e and b are used for the next steps in lieu of points a and
b. Right: Further iterations.

The workflow of the proposed numerical procedure, illustrated in Figure 39, is as follows.
An initial guess for the minimum and maximum values of 07 is provided by the user,
denoted also as left and right guess respectively. These two initial guess values can be
estimated based on the admissible range as explained for the example of Figure 38 (e.g.
the magenta line). Based on the aperture width and the uniaxial strength of the material,
og is determined by equation (89) for the two initial guess values of 0. Then the
conformal mapping algorithm is used to solve the direct problem (see previous chapter)
evaluating the depth of the breakouts for the two pairs of o and og. The resulting
breakout depths are compared with the target depth value (input borehole breakout depth)
and a new interval for the minimum principal stress o7, is evaluated using the method
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described in the next paragraph. The procedure is repeated until a stress state is reached
for which the estimated depth is within tolerance of the target breakout depth value. The
tolerance is a parameter of the algorithm and is set by the user. In each case presented
below, the tolerance used is provided.

In the bisection method, where two initial guess points are also provided, the middle point
is used to evaluate the interval in which the solution is to be found for the next iteration,
bisecting thus the domain in which the solution is sought. In the proposed numerical
procedure, a linear relationship between the minimum in sifu in plane stress and the
breakout depth is assumed in order to evaluate the new guess of the minimum principal
stress o7, for the next iteration, instead of the middle point.

In order to clarify the numerical procedure a graphical example is given in Figure 39. In
this example the minimum or left estimate for the minimum in situ principal stress equals
25 MPa and the maximum or right estimate for the minimum in situ principal stress equals
50 MPa for the first iteration. The corresponding values of the maximum in sifu stress OH
are calculated by equation (89) and determine the two blue points with x-coordinates 25
MPa and 50 MPa. The calculated corresponding normalized depth d/R is about 1.1,
located at point a, (lower than the selected target value of 1.3) and about 1.4, located at
point b, (higher than the target value 1.3). Since convergence is not achieved, a third,
middle value is selected for the minimum principal stress 0, by using the intersection of
the line between points a and b with the line expressing the target normalized depth, found
at point ¢ in the example. For this new value the maximum principal stress 0y and the
normalized breakout depth d/R are estimated, corresponding to points d and e
respectively. From the three evaluated normalized depths, the new interval for the
solution is gained. For the new interval the procedure is repeated until a stress state is
reached corresponding to a depth within precision of the target one. The code is outlined
in more detail bellow:

provide the following:
left bracket for the minimum stress shl
right bracket for the minimum stress shr
breakout width theta
breakout depth d

evaluate:
left bracket maximum stress sHI1
left bracket depth dl
right bracket maximum stress sHr
right bracket depth dr

initialize estimated depth dm to zero
while (abs(d-dm) > Tol)

evaluate the new minimum stress guess shm using
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q=(dr-d)/(dr-dl)

shm=shl+q(shr-shl)
evaluate the new minimum stress guess sHm
evaluate the new depth guess dm

if (d in [dl dm])

shr=shm
sHr=sHm
dr=dm

else
shl=shm
sHI=sHm
dl=dm

end
end

return shm, sHm, dm

7.2  Results

As an example the case shown in Figure 38 is used. The width of the breakout is set to
80°, while the initial estimates for the minimum and the maximum value of the in situ in
plane minimum principal stress are 9 MPa and 18.5 MPa respectively. The order of
polynomial interpolation for the discretization of the borehole boundary after the removal
of the yielded area (see discussion in section 6.1) was set to 3 instead of 5, as this was
found to be more stable in the area of low minimum and high maximum principal stresses
and close to the area of total failure. The borehole radius was set to 100 mm.
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Figure 40. Example of results for target depth 1.5. Left: Results. Right: Convergence.
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Two different target depths were tested. The normalized target depth was set equal to 1.5
in the first and 1.6 in the second case. The results are shown in Figure 40 and Figure 41
respectively. On the left of Figure 40 and Figure 41 respectively the estimate of the
minimum in situ in plane principal stress is shown on the horizontal axis. The left vertical
axis corresponds to the estimate of the maximum iz sifu in plane principal stress with the
respective data marked in blue, while the right vertical axis corresponds to the normalized
depth with the respective data marked in red. On the right of Figure 40 and Figure 41 on
the left vertical axis the estimate of the maximum in sifu in plane principal stress and on
the right vertical axis the absolute error of the normalized depth are shown as a function
of the number of iterations.
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Figure 41. Example of results for target depth 1.6. Left: Results. Right: Convergence.

For the first case 8 iterations were required for a tolerance of 1073, This includes the initial
guesses as iterations. The final values for the minimum and maximum primary stresses
were 10.80 MPa and 23.37 MPa respectively, while the corresponding normalized depth
was equal to 1.499. It can be seen that the target value is approached monotonically from
one side, when ignoring the first iteration. The value of both maximum principal stress
and normalized breakout depth changes rapidly in the first iterations and the increments
decrease as the number of iterations increases.

The behavior is very similar in the second case. The area corresponding to small minimum
principal stresses is however characterized by a very strong variation of the breakout
normalized depth and some slight oscillations in the values for the depth may be observed
on the left of Figure 41. Despite this, the convergence remains satisfactory, as shown in
on the right of the same figure. A number of 12 iterations was required for a tolerance of
5-1073. The final values for the minimum and maximum primary stresses were 9.48 MPa
and 24.01 MPa respectively, while the corresponding normalized depth was equal to
1.605. In this case the normalized depth varies in a much stronger manner than the
stresses: a normalized depth of 1.578, evaluated for the eighth iteration, corresponds to a
minimum and a maximum primary stress of 9.53 MPa and 23.99 MPa respectively.
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Figure 42. Superposition of the results for the two test cases. Full symbols correspond to
a target normalized depth of 1.5, while open symbols correspond to a target normalized
depth of 1.6. It can be observed that depth decreases rapidly with increasing minimum
principal stress for points close to the left side of the figure.

The results for both cases are plotted together in Figure 42. This highlights the variation
of the normalized depth of the breakout with the stresses. For minimum in situ in plane
principal stresses between 9 MPa and 10 MPa, the normalized breakout depth varies
roughly between 1.8 and 1.6, while for minimum principal stresses between 10 MPa and
18 MPa the normalized depth varies roughly between 1.6 and 1.2, showing a much slower
variation.

The breakout shape, including the successive iterations to evaluate it, is shown in Figure
43 for the initial guesses, which are the same for the two cases. It can be seen that while
the width is the same, the depth is very different. However, at the same time it should be
observed that for the borehole shape marked in blue the depth close to the area of the
borehole wall that remains sound is very small. Another interesting observation,
particularly obvious in the larger breakout, is that the breakouts are dog-ear shaped. For
the small scale simulations the breakouts are instead cusp shaped, as shown in Figure 36.
This is very likely a scale effect, as the same phenomenon has been observed in the
laboratory, with smaller boreholes forming cusp-shaped breakouts and larger ones
forming dog-ear-shaped ones.

On the whole the performance of the procedure for the evaluation of the primary stress
state using the shape of the borehole breakouts may be deemed satisfactory. In the next
section the feasibility of the stress assessment is discussed on the basis of experimental
results.
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Figure 43. Breakout shape for the initial guesses. It can be seen that while the width is
the same, the depth is very different. Moreover, in contrast to the small-scale simulation,
the breakouts are dog-ear shaped instead of cusp shaped.

7.3 Discussion on the feasibility of stress assessment

Though the opinion voiced in (Gough & Bell, 1982) that the shape of the borehole
breakouts depends solely on the material properties and not on the in situ stress state has
been shown through experimental results not to reflect reality, it is as yet unclear whether
the depth and the width of borehole breakouts are independent from each other. It has
been postulated (Herrick & Haimson, 1994; Song, 1998) that, while they both depend on
the stress state, they vary in the same manner with it. This would mean that each time
either the depth or the width of the borehole breakout may be used for the stress
assessment, as the use of the one renders the use of the other automatically redundant.
This in turn means that one relationship for the stresses may be gained from the shape of
the breakouts, rather than two, as done in the previous section, even using both the
breakout depth and the breakout width.

Herrick and Haimson (Herrick & Haimson, 1994) and Song (Song, 1998) reached this
conclusion on the basis of results of tests performed in the laboratory. These results are
presented in Figure 44. The experimental program by (Herrick & Haimson, 1994) was
previously discussed in some detail. On the left of Figure 44 the normalized depth is
plotted as a function of the aperture angle for all tested stress states. It can be observed
that the width of the distribution of the points, which is close to linear, is rather narrow.
This in turn implies that knowledge of the width is equivalent to knowledge of the depth
and no additional information may be gained by the use of both.

Song (Song, 1998) performed a large number of tests on Westerly granite, that are plotted
on the right of Figure 44. The maximum principal stress was acting in the horizontal
direction, with the borehole cored in the vertical direction. Its values lay between 140 and
240 MPa. The minimum principal horizontal stress and the vertical stress were
significantly smaller and ranged between 20 and 50 MPa and 20 and 120 MPa
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respectively. Once more, the results lie on a relatively narrow band, which is similar to
the one observed on the left of Figure 44, especially when taking into account the
difference of the limits of the axes for the two graphs. It should be remarked that the
results by (Song, 1998) correspond to significantly smaller aperture angles and depths
and that the minimum horizontal principal stress was in all cases significantly smaller
than the maximum one.
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Figure 44. Borehole breakout normalized depth as a function of the breakout width. Left:
Results on Alabama limestone by (Herrick & Haimson, 1994). Right: Results on Westerly
granite by (Song, 1998).
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Figure 45. Borehole breakout normalized depth as a function of the breakout width for
different far field stress states by (Haimson & Lee, 2004). The vertical stress for the
different sets marked in the legend was equal to 30, 40, 40, 40, 50 MPa from top to
bottom.
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In contrast to the findings discussed above, the results by Haimson and Lee (Haimson &
Lee, 2004) on Tablerock sandstone do show a one to one relationship between breakout
aperture width and normalized depth, as may be seen in Figure 45. Even in this case it
should however be remarked that the results of the three first test series are located in a
rather narrow domain. The differences observed indicate that in some cases at least
different information is included in the two quantities describing breakout shape. It
remains unclear however, why this variation was not present in the previous cases. In the
case of (Song, 1998) it may attributed to the small variation of the minimum principal
stress, when compared to the maximum principal stress, though this is only an
assumption.

The numerical results, as shown for example in Figure 40 or Figure 41, show a significant
variation of the normalized depth with constant breakout width. The discrepancy may be
due to the selection of the stress states tested in the laboratory or to the fact that a failure
criterion not incorporating the out of plane stress was used.
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8. BRIE DATA AND COMPARISON

The Bentonite Rock Interaction Experiment, BRIE, was set in the Aspo Hard Rock
Laboratory and focused on the hydraulic interaction between the system components of
compacted bentonite and the near-field host rock composed of hard and fractured
bedrock. The experiment aimed at investigating the exchange of water across the
bentonite-rock interface and was conceived in the framework of the research efforts for a
future deep underground repository for high-grade nuclear waste. The multibarrier
Swedish concept for nuclear waste underground storage includes a natural barrier, the
crystalline bedrock, and two engineered barriers, a bentonite buffer and a copper canister.

1 i 1

a) Selection of site c) Drilling and characterisation of
b) Site characterisation central boreholes

d) Draw-down e) Installation of bentonite parcels
f) Recovery and saturation
Monitoring of sensors

g) Dismantling and analysis of (partly)
saturated bentonite parcels and rock.

Figure 46. Outline of the BRIE project after (Fransson et al., 2017).
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The outline of the project is shown in Figure 46. Within the frame of BRIE, two boreholes
were cored (diamond-drilled) and the cores were investigated for fractures. Subsequently
bentonite parcels were installed in the boreholes. The hydration of the bentonite parcels
was monitored. When the test was concluded, the boreholes were overcored and the
bentonite parcels were dismantled. The overcored samples were again investigated (in
further detail) for fractures.

This chapter aims to assess the applicability of the approach suggested in this report to
real project data. The purpose is not to provide a full validation but to demonstrate how
the approach can be used as an indication and guidance for increased understanding
linking geological mapping, hydrogeological observations and possible (likely) rock
stresses. An extensive description may be found in the project report (Fransson, Akesson,
& Andersson, 2017), while a more abbreviated description is given in (Fransson,
Lonngvist, & Viola, 2019). The sections below describe the stepwise procedure in further
detail.

8.1 Geological setting

The Aspd Hard Rock Laboratory (HRL) is located in southeast Sweden, in the Misterhult
Archipelago and close to the Oskarshamn nuclear power plant. Its scope is the
development and testing of different technologies and methods for studying rock,
designing the repository for nuclear waste and depositing the canisters. The BRIE site is
located in the TASO tunnel, see Figure 47, at approximately 420 m depth. The boreholes
investigated, see detail of area (A) in Figure 48, have shown gabbroid-dioritoid and fine-
grained granite as main rock types. In addition, rock occurrences (veins and dykes) with
pegmatite and fine-grained granite were identified.

Stress measurements from previous works (Janson & Stigsson, 2002; Thoérn, 2013)
conclude that the ranges for the in situ stresses are:

e ou: 16-26 MPa (trend 140-155°)

e on 9-14 MPa

e ov: 10.5-18.1 MPa.

The rock is characterized by a Young’s modulus of 76 MPa, a Poisson’s ratio of 0.25 and
a tensile strength of 14.3 MPa.

Other sources, such as (Hakala, Siren, Kemppainen, Christiansson, & Martin, 2013), give
a wider range for the principal stresses, namely

e ou: 24+/-5 MPa

e on: 10-18 MPa

e oyv: 1020 MPa.
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In this case the Young’s modulus is reported as ranging from 50 to 80 GPa and depending
on the orientation, with lower values in the vertical direction. The Poisson’s ratio was
found to range from 0.2 to 0.3 and to show little dependence on the direction.

Figure 47. Site outline after (Fransson et al., 2017).

The outline of the site after (Fransson et al., 2017) is shown in Figure 47, with the marked
area A shown magnified in Figure 48.
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Figure 48. Borehole placement after (Fransson et al., 2017).
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The boreholes marked in red were drilled first with a diameter of 76 mm, for selection of
site and for site characterization, see Figure 46a and b. The boreholes marked in black
followed, also with an initial diameter of 76 mm. Subsequently boreholes KO0017G01
and KO0018GO01 were extended to a diameter of 300 mm with a depth of about 3 m, see
drilling and characterization of central boreholes, Figure 46c. The distance between the
boreholes marked in red was equal to 1.5 m, while the distance between black and red
boreholes was either 0.4 m or 0.75 m. This was followed by installation of bentonite
parcels; recovery and saturation including monitoring of sensors (Figure 46e and f) and
finally; dismantling and analysis of (partly) saturated bentonite parcels and rock, Figure
46g and Figure 50.

The initial boreholes (cores from 300 mm boreholes) showed no continuous fractures as
indicated by e.g. the wet trace at the angle 288° (internal orientation) in Figure 49, though
other, pre-existing, fractures were observed. After dismantling however, a number of
vertical, not previously identified, fractures with pronounced wetting were seen on and
inside the bentonite (see lower part of bentonite with internal orientation 0°, 288° and
216°, Figure 49). Based on a compilation of detailed mapping of the cores from the 300
mm boreholes (detailed mapping performed using dye), the main part of the wetted and
vertical traces that were interpreted from bentonite, see Figure 49, were not identified on
the core. These fractures are more or less perpendicular or parallel to the tunnel and also
close to in line with adjacent boreholes (secondary boreholes, see Figure 48 and Figure
50). One possibility could be tensile fractures due to the minimum circumferential stress
becoming negative. These fractures would occur as pairs of mutually opposed, vertically
dipping conductive fractures.

Figure 49. After (Fransson et al., 2017), lower part of bentonite parcels from
KO0018G01 with wetting marks after their extraction. Bentonite blocks 1 to 12
identified on the right hand side of the illustration,
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The method used for the dismantling was stitch drilling to cut the periphery and wire
sawing to cut the bottom. The final result is shown in Figure 50.

Figure 50. Boreholes after dismantling. KO0017GO01 on the left and KO0018GO1 on the
right. The additional fractures are marked in white arrows.

The type of bentonite used was MX-80 with a requirement of dry density of 1562 kg/m?.
At this dry density and with distilled water the maximum swelling pressure of bentonite
is about 10 MPa (Karnland, Olsson, & Nilsson, 2006). According to the same work, at
this dry density the swelling pressure is not sensitive to the presence of anions and cations
and even high concentrations do not reduce the swelling pressure significantly. It should
be noted that these pressures correspond to saturated materials. In the specific case the
degree of saturation ranged from 0.5 to 1.0.

8.2 Modelling stages

The stress state is initially evaluated after the excavation of the 300 mm boreholes, see
Figure 46¢c. It is assumed that no failure has taken place before this point, as no
(continuous) and possibly coring induced fractures were observed on the cores after the
expansion of the two test boreholes to 300 mm diameter. The assumption is that the coring
or the coring and swelling (see below) would result in induced fractures. The theory of
elasticity is used for the evaluation of the stress state.

Subsequently the installation of the bentonite parcels is considered, Figure 46e. It is
investigated whether the swelling pressure from the bentonite parcels may have induced
the observed fractures.

In a final stage the effect of the overcoring is considered and it is investigated whether
the fractures may have originated in that stage, Figure 46g and Figure 50.
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After that the tool based on conformal mapping is used to assess which stress states lead
to results compatible with the observations made in situ within the frame of the BRIE
project.

8.3 Model

8.3.1 Stagel

The orientation of the tunnel TASO with respect to the North is shown in Figure 51. The
trend of the maximum principal horizontal stress lies between 140 and 155°, as already
mentioned above. This results in a deviation of the trend of the maximum principal

horizontal stress from the tunnel axis that lies between 68° and 83°, as shown in Figure
52.
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Figure 51. Orientation of the tunnel with respect to the North.
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Figure 52. Model geometry including trend of the maximum principal horizontal stress.

The tunnel has a diameter of 5 m and its creation led to a disturbance of the initial stress

field. To evaluate the secondary stress state, the stress is decomposed into in-plane and

out of plane components. The vertical stress will be the vertical in-plane component,

while the horizontal in-plane component will be equal to

oy +oyp OH —
2 T2

Ohi0 =

Th cos(2(90° - 6)) (90)

using the usual transformation law from the circle of Mohr and where oo stands for the
horizontal in-plane stress in the undisturbed state and 8 is the angle between stress trend
and tunnel axis (between 68° and 83°). In the same way the out-of-plane components will
be

o+ oy oy —

Th
> > cos(26) 91)

OhoO =

O —0Op .
ThoO = HT] sin(26) (92)
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Figure 53. Parametric analysis of the values of the undisturbed stress state.
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The values of these stresses under different considerations are shown in Figure 53. On
the left the values of the principal stresses are assumed to be known and the angle is
varied. For the continuous lines of the left subfigure the set (cv=10.5 MPa, cH=26 MPa,
ch=9 MPa) was used, while for the dotted lines the set (cv=18.1 MPa, cH=26 MPa,
ch=14 MPa) was used. In the right subfigure the average values from the literature were
used for all quantities, except for the principal horizontal stress. It can be observed in the
figure that in this case the variation is more pronounced.

In the disturbed stress state, the stresses along the vertical direction are principally of
interest, as the considered boreholes cored for the BRIE project were vertical. The
redistributed stress field then can be evaluated as

T = % [(hio + o) (1= @) + (o = o) (1 = 4a” + 3a”)|

060 = % |[(@hio + ) (1 + @) + (hio = o) (1 + 3a*)]
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Toh = —Tho0 (1 + a2) (98)

where
R
r

a=

99)

For the new boreholes the out-of-plane stress is o from equation (93) and the in-plane-
stress results from the combination of ges, oop and 7o from equations (94) to (98). Since
the tunnel radius is 5 m and the length of the new boreholes is 300 cm, the value of a will
vary between 0 and 0.6. Examples of results for the maximum and minimum in-plane
stresses for the new boreholes are given in Figure 54.

In all cases an angle of 83° was used. This angle seems more likely based on the
orientations of the fractures observed in sifu. The different initial stresses used were:

e Continuous line: (cv=10.5 MPa, cH=26 MPa, ch=9 MPa)
e Dotted line: (cv=10.5 MPa, cH=26 MPa, ch=14 MPa)
e Dashed line: (cv=18.1 MPa, cH=26 MPa, ch=14 MPa)
e Dash-dotted line: (cv=18.1 MPa, cH=16 MPa, ch=9 MPa)

It can be observed that in all cases the maximum stress is above and the minimum below
15 MPa, though this may be a result of the choices made here. It should also be noted that
the angle of deviation of the principal stress directions varies with the initial stress state
and ranges in this case between 15° and 30°. For an angle of 68° the angle of deviation
for the same cases varies between 27° and 45°.
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Figure 54. Maximum and minimum in-plane stress estimates for the vertical boreholes.
Depth indicates depth below the floor of the tunnel.
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Figure 55. Estimated stress ratios. Black, angle of 83°. Red, angle of 68°. Depth
indicates depth below the floor of the tunnel.

The stress ratios for the same cases are shown in Figure 55. In black the stress ratios for
an angle of 83° and in red for an angle of 68° are shown. It is known that tensile stresses
occur for stress ratios lower than 1/3, which seems to be often the case here. It is also

interesting to note, that for most curves the stress ratio at the bottom of the borehole seems
to be lower than the stress ratio at the top.
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From this analysis it is concluded that the stress state is such that it could lead to tensile
failure of the borehole wall, or at least to the presence of tensile stresses at the borehole
wall. For the cases examined before the minimum circumferential stress at the borehole
wall is shown as a function of depth in Figure 56. For both angles only the first stress
scenario leads to cracks. The differences in terms of magnitude are small. However, for
the angle of 83°, the orientation of the fractures is in agreement with the one observed in
the site. In such a scenario it is likely that the tensile fractures formed later under the
effect of the swelling pressure of the bentonite parcels. It should however be remarked
that a time delayed formation of the tensile fractures also without the influence of the
swelling from the bentonite, cannot be excluded, as it is known that it can take time for
the stresses in rock to redistribute and failure to become apparent (Amitrano &
Helmstetter, 2006; Savage & Mohanty, 1969; Wawersik & Brown, 1973).
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Figure 56. Minimum circumferential stress. Red, angle of 83°. Black, angle of 68°. The
blue line marks the tensile strength of the rock. Depth indicates depth below the floor of
the tunnel.

Observations from BRIE indicate a stress ratio at the bottom of the borehole being lower
than the stress ratio at the top. Based on contour plots of water content, “inward directed”
gradients were identified in bentonite block number 5 in the lower part of KO0018G01
(see block 1 to 12 in Figure 49), indicating inflow from the rock wall. The highest water
content coincides with one of the dark, wetted trace in the photograph and it was
suggested that this may be caused by fracture flow from non-registered fractures (rather
than rock matrix flow).

For borehole KO0017GO01, the water content in the lower blocks were affected and was
most pronounced in (internal) directions 72 and 288°. This coincided with the pegmatite
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vein close to these directions (the vein as well being close to perpendicular to the tunnel).
At a smaller depth (above the water-bearing vein) in borehole KO0017GO01, a very slow
increase in RH appeared to be caused by moisture transfer from one of the major fractures
in the section below (indicated by the major gradient in water content). The section at a
smaller depth, with a slow increase in RH is also a section with a low water content and
seemingly no obvious water-bearing feature along the fracture wall (as seen in
KO0018GO01).

It is examined next whether the small boreholes could disturb the stress state to the extent
of influencing the orientation of the tensile fractures. The model geometry assumed in the
tunnel is the one shown in Figure 52. The question needing to be answered is whether the
boreholes surrounding the principal one could have a significant effect on the stress state
acting on the principal borehole. The nearest borehole to the central one is located at a
distance of 400 mm center to center. Since the radius of the central borehole is 150 mm,
this corresponds to » = 250 mm. The radius of the borehole is 38 mm. Considering this
and different stress scenarios, it results that disturbances are at most of the order of 1 to 2
MPa and should therefore only have a slight effect on the stress state and its orientation.

8.3.2 Stage2

From the result of the previous section it is clear that the effect of the swelling pressure
from the bentonite may have induced the tensile fractures observed after dismantling.
Considering again the cases of the previous section, the minimum circumferential stresses
now become those shown in the previous section further reduced by 10 MPa, under the
assumption that the bentonite is saturated. The value of the swelling pressure naturally
becomes smaller for lower degrees of saturation but should still be higher than 5 MPa at
a degree of saturation of 0.5. The results for the circumferential stresses along with the
tensile strength are shown in Figure 57 under the assumption that the value of the swelling
pressure was equal to 10 MPa.

BeFo Report 211



77

o

depth [cm]

N oo,
o ()} o a
(@] o o o

-250

-300

10

[MPa]

%06 min

Figure 57. Minimum circumferential stress. Red, angle of 83°. Black, angle of 68°. The
blue line marks the tensile strength of the rock. Depth indicates depth below the floor of
the tunnel.

8.3.3 Stage3

Given the amount of uncertainty present in the stress state and the uncertainty concerning
the order in which the stitch sawing was performed, it is hard to assess the effect of the
dismantling on the formation of the cracks observed. It is however clear that the process
along with the accompanying vibrations may have caused some relative displacement in
the cracks. It is very unlikely that they were all created at this stage, since some of the
wetting marks on the bentonite parcels indicate that they have been present for some time.

8.4 Assessment of likely stress states

8.4.1 Stress field orientation

A first significant point concerns the orientation of the stress field. The analysis presented
above indicates that the reason for the creation of the tensile cracks is most likely the
presence of tensile stresses. As such fractures are aligned to the local principal stress
directions, it is concluded here that the trend of the maximum principal in situ stress is
most likely to be 155°.

8.4.2 Stress magnitudes
Given that the stress orientation selected means that the stress state is practically coaxial
to the tunnel, the two components principally governing the maximum in-plane stress for
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the 300 mm boreholes are the vertical stress and the maximum horizontal stress. The
minimum in-plane stress for the 300 mm boreholes is governed primarily by the minimum
horizontal stress. High tensile stresses are expected to arise and to be large in magnitude
in the areas of interest when the stress anisotropy is large between the vertical and the
maximum horizontal stresses when both are characterized by high values and when the
minimum horizontal stress is small. This in turn means that both strike-slip and reverse
type stress states are possible.

The magnitude of the stress can be delimited using the tool developed within the frame
of the present project. In terms of information from the site two main types are required:
the location in the borehole at which the cracks were observed and, ideally, the depth of
the cracks. In the present case, it is known that the cracks were observed towards the
deeper part of the borehole. The depth of the fractures is not known. For the sake of
illustration, it is assumed that the cracks were observed from a depth of 250 cm to the
bottom of the borehole and that their depth is known. To simplify the process and given
that the likely trend only weakly affects the stresses, as shown in Figure 56 and Figure
57, it is assumed that the trend of the maximum horizontal stress is perpendicular to the
tunnel axis. Using the analytical considerations presented above, these assumptions result
in the equation

o =3.000, — 1590y + 0.340, — p (100)

where o7 is the tensile strength of the rock, which is known and equal to -14.3 MPa, and
p is the bentonite pressure, which may or may not be used depending on when the cracks
reached their current depth.

The current problem has three unknowns, namely the three principal stresses. It is
therefore necessary to assume one of the stresses. It is selected here for the sake of
illustration to set the vertical stress to 14 MPa, but any other option may be selected or a
parametric analysis with respect to the vertical stress may be performed. If a bentonite
pressure of 10 MPa is used and the depth of the cracks at the bottom of the borehole is 60
mm, the code yields a maximum horizontal stress of 27.3 MPa and a minimum one of
11.5 MPa.

8.5 Conclusions

The analysis performed in the chapter indicates that the fractures observed after
dismantling in the frame of the BRIE project may well have been created by either
disturbances in the stress field caused by the excavation of the tunnel and the drilling of
the boreholes or by a combination of the above procedure with the swelling pressure of
the bentonite parcels, as a result of the increase of their degree of saturation.
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In addition, it is demonstrated how the approach can be used as an indication and guidance
for increased understanding linking geological mapping, hydrogeological observations
and possible (likely) rock stresses.
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9. CONCLUSIONS AND FUTURE WORK

In this report a method for the evaluation of the borehole breakout shape was presented
for the case when the properties of the intact rock and the in situ stress are known. An
additional algorithm was described for the case when the breakout shape and the material
properties are known and the in situ stress is sought.

The first algorithm was verified against analytical results and its applicability was
validated against experimental results. The second algorithm was validated only against
previous experimental results.

On the whole it can be concluded that both approaches provide good results for the
respective application. The question of applicability for the evaluation of the in situ stress
remains open, not due to the performance of the algorithm and the method developed for
this project but due to evidence from experimental data. This evidence suggests that for
certain types of materials and certain ranges of stresses at least, there may not exist a one
to one relationship between breakout shape and stress state. Further research in this
direction is required to provide a final answer to this question. This may require a suitable
series of experimental results.

For the future it is planned to extend the capabilities of the code in three different
directions: thermal effects, fluid flow and non-coaxial stress states. The first two
extensions are straightforward, as they both correspond to classical fields of application
for conformal mapping. The third requires some more effort, but the development is
analogous to the one for the in-plane stress field discussed in the present report. The
combined package could offer a simple and fast simulator for borehole stability.

A further step planned for the future is the repackaging of the algorithm on the basis of
open source software. The code is currently implemented in Matlab. Implementing it in
C with a Python frontend would significantly increase speed. In addition, in this manner
it could be packaged and distributed as an executable with a user interface.
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