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PREFACE 

Although a simplification of the real world, analytical solutions play an important role 
in modelling of flow of grouts in jointed rock. Two analytical solutions for 2D radial 
flow of a Bingham fluid between smooth parallel plates are currently being used, both 
with simplifying assumptions (El Tani, 2012, Gustafson et al, 2013; Zou et al, 2020). 

The main objective of the present study has been to assess which of the two solutions is 
correct and thereby recommended for use in the grouting community. The solution used 
in this study assumes a constant plug flow region, similar to 1D flow in channels and 
pipes, in order to fulfil the requirement of mass balance (Eq. of continuity). 

The other available solution (Dai & Bird, 1981; Hässler, 1991, Gustafson et al, 2013; 
Hoang et al, 2021) implies a radius dependent plug flow region and in order to fulfil 
mass balance introduces a vertical velocity component (e.g. Hoang et al, 2021). 

One cannot conclude from the current work that one solution is right and the other 
wrong. They are both simplifications and it is interesting to note that for practical 
purposes, e.g. for grouting simulations, it does not matter which one you use as they 
both generate similar results. However, it should be stressed that the solution presented 
in this study has simpler mathematical expressions that makes it easier to use by 
practitioners involved in grouting. 

This study also introduces numerical simulations, as a complement to the analytical 
solutions, in order to determine the effect of rough fractures, water filled fractures, 
channel networks and rheological properties of the used grout. 

The research presented in this report was mainly carried out at the Department of 
Sustainable Development, Environmental Sciences and Engineering (SEED), at KTH 
Royal Institute of Technology. The work was supervised by Prof. Vladimir Cvetkovic, 
KTH, and Dr. Ulf Håkansson, Skanska Sweden AB. Their support, encouragement, and 
valuable insights of the work are greatly appreciated. 

The input from the project reference group is also gratefully acknowledged. The 
following have participated: 

Thomas Dalmalm and Christian Butron (Swedish Transport Administration), Ann 
Emmelin och Mikael Creütz (Golder), Magnus Zetterlund (Norconsult), Patrik 
Vidstrand (SKB), Tommy Ellison (Besab), Johan Wiklund (Incipientus) and Per 
Tengborg (BeFo). 

 

Stockholm, August 2021 

Per Tengborg 
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FÖRORD 

Även om det är en förenkling av den verkliga världen spelar analytiska lösningar en 
viktig roll vid modellering av flödet av injekteringsmedel i sprickigt berg. Två 
analytiska lösningar för 2D-radiellt flöde av en Binghamvätska mellan släta parallella 
plattor används för närvarande, båda med förenklande antaganden (El Tani, 2012, 
Gustafson m.fl. 2013; Zou et al, 2020). 

Syftet med denna studie har varit att bedöma vilken av de två lösningarna som är 
korrekt och som därmed kan rekommenderas för användning vid praktisk injektering. 
Den lösning som används i denna studie förutsätter en konstant plug i radiell riktning 
vid en viss inträngning, liknande 1D-flöde i kanaler och rör, för att uppfylla kravet på 
massbalans (kontinuitet). 

Den andra tillgängliga lösningen (Dai & Bird, 1981; Hässler, 1991, Gustafson m.fl. 
2013; Hoang et al, 2021) innebär en radieberoende plug och för att uppfylla 
massbalansen införs en vertikal hastighetskomponent (t.ex. Hoang et al., 2021). 

Man kan inte dra slutsatsen av detta arbete att den ena lösningen är rätt och den andra 
fel. De är båda förenklingar och det är intressant att notera att för praktiska ändamål, 
t.ex. för simuleringar av injektering, spelar det ingen roll vilken man använder eftersom 
de båda genererar liknande resultat. Det bör dock betonas att den lösning som 
presenteras i denna studie har mycket enklare matematiska uttryck som gör det lättare 
att använda av utövare som injekterar. 

Denna studie introducerar också numeriska simuleringar, som ett komplement till de 
analytiska lösningarna, för att bestämma effekten av rå sprickor, vattenfyllda sprickor, 
kanalnätverk och reologiska egenskaper hos det använda injekteringsbruket. 

 
Forskningen som presenteras i denna rapport har främst utförts på Institutionen för 
hållbar utveckling, miljövetenskap och teknik (SEED) på KTH. 
Arbetet har handletts av Professor Vladimr Cvetkovic, KTH och Dr. Ulf Håkansson, 
Skanska Sverige AB. Deras stöd, uppmuntran och värdefulla insikter är mycket 
uppskattat. 
 
Ett stort tack riktas också till projektets referensgrupp där följande personer har ingått: 
Thomas Dalmalm och Christian Butron (Trafikverket), Ann Emmelin och Mikael 
Creütz (Golder), Magnus Zetterlund (Norconsult), Patrik Vidstrand (SKB), Tommy 
Ellison (Besab), Johan Wiklund (Incipientus) och Per Tengborg (BeFo). 

 

Stockholm, augusti 2021 
Per Tengborg 
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SUMMARY 

Modeling of cement grout propagation in fractured rocks is important for the design, 
execution and monitoring of rock grouting in practice. In this project, we studied non-
Newtonian cement grouts propagation in rock fractures by theoretical analyses and 
numerical simulations.  

The analytical solutions for radial flow of a Bingham fluid, between parallel plates, are 
analyzed and existing disagreements in the literature regarding the two different 
analytical solutions that are used for analysis of grouting in rock fractures is investigated. 
The analyses reveal that the two solutions are both zero-order approximation solutions 
based on different assumptions, that is with or without consideration of the vertical 
velocity component across the aperture. The one without considering the vertical velocity 
yields to a solution with radius-independent plug flow region, which largely simplifies 
the calculations. By using the solution with radius-independent plug flow region, 
Bingham grout penetration and flowrate (at the injection borehole) evolution as functions 
of grouting time are given for the first time. Discrepancies in the two approximation 
solutions for grout penetration and flowrate evolution are illustrated, showing negligible 
differences. The clarification of the plug flow region and evaluation of discrepancies in 
the two solutions presented in this work improves our confidence and simplifies modeling 
and design of grouting in rock engineering applications.  

In reality, rock fracture grouting process involves non-Newtonian fluid flow in fractures 
with rough surfaces, which is rarely studied in the literature. To investigate the impact of 
fracture surface roughness on rock fracture grouting, we presented direct numerical 
simulations of non-Newtonian grouts flow in single rough-walled fractures, using a 
regularized method (i.e., the Bingham-Papanastasiou model) to approximate the yield-
stress. The rough-walled rock fracture models are created from a laser-scanned surface of 
a granite rock sample, to represent realistic features of natural rock fractures. The 
numerical results show nonlinear behaviors of non-Newtonian fluid flow in rough-walled 
fractures caused by non-Newtonian rheological properties and enhanced by the fracture 
surface roughness. The surface roughness significantly reduces the effective 
transmissivity (defined as the ratio between the flowrate and the pressure gradient) when 
Reynolds number (Re) is relatively large, i.e., Re >10. 

A mathematical model based on the Reynolds flow equation for cement grout propagation 
in a homogeneous water-saturated rock fracture is presented. The model is based on two-
phase flow, i.e., grout as a Bingham fluid and groundwater as a Newtonian fluid, and is 
used for investigating the importance of the water flow in rock grouting. The modeling 
results for the two-phase flow generally show the importance of the water phase that can 
significantly affect the pressure distribution and grout propagation in the fracture, 
especially under the condition of grout hardening. Such effects depend on the viscosity 
ratio between the grout and groundwater, which becomes increasingly important for cases 
with smaller values of the viscosity ratio. Applying an analytical solution based on single-
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phase flow, i.e., neglecting the impact of groundwater flow, for modeling of rock fracture 
grouting, will generally overestimate the propagation length. 

The two-phase flow model for single fractures is extended to simulate non-Newtonian 
cement grouts propagation in water-saturated fracture networks. We verified the two-
phase flow model by comparing numerical simulation results of two-phase flow of 
cement grouts propagation in fracture networks with the benchmark data in Håkansson 
(1987). Using this extended model for numerical simulations on the grout propagation 
the impacts of network geometry, hydraulic aperture distribution and the rheological 
properties (yield stress and plastic viscosity) are investigated. Cement grout propagation 
in randomly generated two-dimensional discrete fracture network (2D DFN) are 
simulated with different cases of hydraulic aperture variability, i.e., constant aperture, 
uncorrelated and length-correlated heterogeneous apertures following a truncated 
lognormal distribution. The results indicate that network structure and hydraulic aperture 
variability significantly affect the grout propagation negatively in 2D DFN systems. The 
randomized network structure and uncorrelated heterogeneous apertures significantly 
delay the propagation rate and largely increase the variability range of the penetration 
volume fraction (the ratio between penetrated volume and total volume of fractures). In 
contrast, in the case with length-correlated heterogeneous apertures, the propagation rate 
increases, while the variability range and rate of change of the penetration volume fraction 
decreases. The rheological properties of cement grouts, i.e., yield stress and plastic 
viscosity, also significantly affect cement grouts propagation in fracture networks. The 
propagation rate in the fracture networks reduces with the increase of the yield stress and 
the plastic viscosity of the cement grouts. The results presented in this report will be 
helpful in the design and prediction of rock grouting. 

 

Keywords: rock grouting, Bingham fluid, fracture networks, two-phase flow  
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SAMMANFATTNING 

Modellering av cementbruks spridning i sprickist berg är viktigt för en ökad förståelse 
vid projektering, utförande och kontroll av injektering i praktiken. I detta projekt 
studerade vi icke-Newtonsk cementinjektering i bergssprickor genom teoretiska analyser 
och numeriska simuleringar. 

De analytiska lösningarna för radiell strömning av en Bingham vätska studeras kritiskt 
och tvetydigheter i litteraturen beträffande pluggflödet i de två olika lösningar som 
används, för analys och design av injektering i bergssprickor, studeras. Analyserna 
baserade på en kraftbalans visar att pluggen vid radiell strömning av en Bingham vätska 
är oberoende av inträngningslängden. Bingham vätskans inträngning och flöde som 
funktion av injekteringstiden visas med användning av det konstanta pluggflödet. 
Skillnader i de två analytiska lösningarna och utveckling av flödet som funktion av tid 
illustreras. Förklaringen till pluggflödet och utvärderingen av skillnaderna i lösningarna 
som presenteras förbättrar vår kunskap och förenklar modellering och design av 
injektering i berg. 

I praktiken utförs injektering med icke-Newtonska vätskor i råa sprickor, vilket dock 
sällan studeras. För att undersöka inverkan av en rå sprickyta vid injektering, presenteras 
numeriska beräkningar av icke-Newtonian strömning i enskilda råa sprickor, med hjälp 
av en regulariserad metod. De råa sprickmodellerna är skapade från en laserskannad yta 
av ett granitbergprov, för att representera realistiska egenskaper hos naturliga 
bergssprickor. De numeriska resultaten visar icke-linjära beteenden för flödet i råa 
sprickor orsakade av icke-Newtonska reologiska egenskaper förstärkta av sprickornas 
rånet. Råheten reducerar avsevärt den effektiva transmissiviteten när Reynolds tal (Re) är 
relativt stort, dvs Re> 10. 

En matematisk modell baserad på Reynolds flödesekvation för inträngning av 
cementbruk i en slät, vattenmättad, bergspricka presenteras. Modellen är baserad på ett 
tvåfasflöde, dvs injektering som en Bingham-vätska och grundvatten som en Newtonsk 
vätska, vilka används för att undersöka påverkan av vattenfasen vid injektering. 
Modelleringsresultaten för tvåfasflödet visar i allmänhet på vikten av vattenfaten som 
väsentligen påverkar tryckfördelningen i sprickan, speciellt under härdning av bruket. 
Sådana effekter beror på viskositetsförhållandet mellan injekterings. Bruket och 
grundvattnet, vilka blir allt viktigare för fall en med mindre värden på 
viskositetsskillnaden. Att tillämpa en analytisk lösning baserad på ett enfasflöde, dvs att 
försumma påverkan av grundvatten vid modellering av ett injekteringförlopp, kommer att 
överskatta inträngningslängden. 

Modellen för tvåfasflöde i enskilda sprickor utvidgas för att simulera icke-Newtonsk 
strömning i vattenmättade sprick nätverk. Modellen verifieras genom att jämföra 
simuleringsresultat för utbredningen i spricknät verk med referensdata från Håkansson 
(1987). Med användning av denna utökade modell undersöktes effekterna på 
utbredningen av nätverksstruktur och hydraulisk variabilitet, dvs nätgeometri och 
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fördelning av spricköppningar, samt reologiska egenskaper, d.v.s. flytgräns och 
viskositet. Injekteringens utbredning i slumpmässigt genererat tvådimensionellt diskret 
spricknätverk (2D DFN) simuleras med olika fall av variabilitet i spricköppning, d.v.s. 
konstant öppning, baserat på och längdkorrelerad heterogena öppningar, efter en 
trunkerad lognormal fördelning. Resultaten indikerar att både nätverksstruktur och 
hydraulisk variation har en stor påverkan för utbredningen i ett 2D DFN-system. Den 
slumpade nätverksstrukturen och de okorrigerade heterogena öppningarna minskar 
avsevärt utbredningshastigheten och ökar till stor del variationen i injekterad volym. För 
längdkorrelerade heterogena öppningar, ökar utbredningshastigheten, medan 
variabiliteten och förändringen av injekterad volym minskar. De reologiska egenskaperna 
hos cementbruk, d.v.s. flytgräns och viskositet, påverkar väsentligen utbredningen i ett 
spricknätverk. Utbredningshastigheten i spricknätverken minskar med en ökning av flyt 
gräns och viskositet hos cementbruket. Resultaten som presenteras i denna rapport 
kommer att vara till hjälp vid utformningen och förutsägelsen av bergsprutning. 

Nyckelord: berginjektering, Bingham vätska, spricknätverk, tvåfasflöde 
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1. INTRODUCTION

1.1 Motivation 

Cement grouting is widely used in rock engineering practices to seal rock fractures and 
limit groundwater inflow. Modeling and analysis of the grout flow is important in design, 
execution and monitoring of grouting in fractured rocks (Wallner 1976; Lombardi 1985; 
Hässler, 1991; Håkansson 1993; Warner 2004; Gustafson and Claesson, 2005; Funehag 
and Fransson 2006; U.S. Army Corps of Engineers, 2014; Stille 2015; Li et al, 2016; 
Liang 2019; Zou et al. 2018; 2019; 2020). Modeling of grouting in rock fractures is 
important for effective design and performance of grouting activities in ever-increasing 
demands of underground rock engineering projects (Stille 2015). 

The cement grouts mostly used in practice are typically non-Newtonian fluids 
(Håkansson 1993; Nguyen et al., 2006; Rahman et al. 2015; Shamu and Håkansson 2019). 
In particular, the Bingham model has been frequently applied to model grouts behavior, 
due to its simplicity and physically based parameters (Hässler, 1991; Håkansson 1993; 
Rahman et al. 2015; Zou et al. 2018; 2019).  

Cement grouts are typically injected through boreholes with a constant pressure (Wallner 
1976; Hässler 1991; Stille 2015). Two types of flow configurations are often used to 
model cement grout flow in fractured rock: radial flow and channelized flow between 
parallel plates (Hässler 1991). Figure 1 illustrates the relevance of both flow 
configurations when considering multiple fractures. Approximately radial flow may 
occur in the fracture intersecting the injection borehole, while channelized flow can take 
place through connecting fractures (Figure 1). 

Figure 1. Schematic diagram of the radial (2D) and channel (1D) representation of cement 
grout flow in multiple rock fractures.
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At present, simulation of the rock grouting process remains a challenge, since the rock 
grouting process involves complex fluids propagation in rock fractures with complex 
geometrical structures. In practice, design of rock grouting relies heavily on analytical 
solutions based on simplified rheological models for grouts and idealized geometrical 
conditions for single rock fractures. In order to derive analytical solutions for the 
Bingham type of grout propagating in single fractures, from an intersecting borehole, the 
process is generally idealized as two-dimensional (2D) radial flow between parallel 
planar disks (e.g., Wallner 1976; Lombardi 1985; Hässler 1991, Sui et al., 2015; Stille 
2015; Zhang 2018). Dai and Bird (1981) derived a solution for flowrate by adapting the 
solution of one-dimensional (1D) plane channel flow. By using the flowrate equation 
presented in Dai and Bird (1981), Gustafson and Claesson (2005) derived a solution for 
the relative penetration length of grout as a function of time, which lay the theoretical 
basis of the real time grouting control (RTGC) method for grouting design (Kobayashi et 
al. 2008; Stille et al., 2009). In this solution, the plug flow region in the radial flow of a 
Bingham fluid is an increasing function of the radial distance. 

This solution has been extended and widely used in grouting study and practice (e.g., 
Fransson et al. 2007; Kobayashi et al. 2008; Stille et al. 2012; Funehag and Thörn 2014, 
2018; Rafi and Stille 2014, 2015; Stille 2015). The validity of the solution by Gustafson 
and Claesson (2005) was questioned by El Tani (2009; 2012; 2013). El Tani (2012) 
derived a solution for radial flow of a Bingham fluid and the relative grout penetration 
with time; he determined the plug flow region by using the energy dissipation equation. 
The results of El Tani (2012) show that the plug flow region is independent of fracture 
radius at each time step and the relative size of the plug flow region (i.e., ratio between 
the height of the plug flow region and the fracture aperture) equals the relative penetration 
length (i.e., ratio between the penetration length and the maximum penetration length) 
when the grout is propagating, which is the same as for 1D channel flow.  

The diverging perceptions of the plug flow region directly led to the two alternative 
solutions for the grout penetration (Gustafson and Claesson 2005; El Tani 2012; 
Gustafson et al 2013). Rafi and Stille (2015) compared the two solutions with results of 
the relative penetration length only for the range of relative time tD smaller than 0.6. tD is 

a dimensionless time defined as 𝑡𝑡𝐷𝐷 = 𝑡𝑡𝜏𝜏02

6𝜇𝜇(𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤)
 in Gustafson and Claesson (2005), where 

𝑡𝑡 is the injection time, 𝜏𝜏0 is the yield stress, 𝜇𝜇 is the plastic viscosity,  𝑃𝑃𝑔𝑔 is the injection 
pressure and 𝑃𝑃𝑤𝑤 is the in situ groundwater pressure. It is found that at the range of relative 
time smaller than 0.2, the two results are almost the same. Comprehensive verifications 
of the two solutions have not been done to date, and the issue of the shape of plug flow 
region has not been fully resolved. 

In most underground projects, the fractured rocks are saturated with groundwater and 
therefore, the grouts spreading in rock fractures is actually a two-phase flow process 
where the groundwater is replaced by the penetrating grouts (Hässler 1991). At present, 
most analytical solutions (e.g., Gustafson and Claesson 2005; El Tani 2012; Gustafson et 
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al 2013) are based on the assumption that the flow of groundwater is negligible. At the 
early stage, Hässler (1991) developed a numerical model to calculate the flow velocity in 
a structured network of planar fractures filled with both water and a Bingham fluid 
(grout), but without a comprehensive examination of the influence of the water flow. It is 
therefore of interest to systematically elucidate the impact of water flow but also to 
provide a more general two-phase formulation of grout flow that can be used for further 
studies of alternative boundary conditions (e.g., with variable injection pressure) relevant 
for execution of grouting works.   

In reality, rock fracture surfaces are rough and fracture apertures are spatially variable, 
which causes important uncertainty for modeling of fluid flow and solute transport in 
fractured rocks (e.g., Zou et al. 2016; 2017). For groundwater (Newtonian fluid), many 
experimental and numerical studies have revealed that the rock fracture surface roughness 
significantly reduces the effective transmissivity of rock fractures. The hydraulic aperture 
is therefore smaller than the mechanical aperture (Zou et al. 2015; 2017).  However, for 
non-Newtonian fluids, e.g., cement grouts and drilling muds, such impact of fracture 
surface roughness have not been investigated. Therefore, the consequence of assuming 
the fracture is homogeneous with a constant aperture, as adopted by many theoretical 
studies, has not been studied in previous works. 

Rock masses contain complex fracture networks, which provide dominant pathways for 
groundwater flow and mass transport (Long et al 1982). The discrete fracture network 
(DFN) model has been widely applied to simulate groundwater flow and solute transport 
in fractured rocks both in 2D (Cacas et al., 1990; Baghbanan and Jing 2007; Dershowitz 
et al., 2007; Zhao et al, 2014) and 3D (Cvetkovic and Frampton 2012; Dreuzy et al., 2012; 
Frampton et al., 2019). To date, only a few studies have simulated non-Newtonian grout 
propagation in fracture networks, e.g., Mohajerani et al., (2017) modeled Bingham grout 
propagation in 2D discrete fracture networks without consideration of the groundwater 
flow. By considering groundwater flow, Hässler (1991), and Erisson et al., (2000) 
simulated Bingham grout flow in 2D structured fracture networks using an implicit 
numerical model. Fidelibus and Lenti (2012) developed a numerical pipe network model 
and modeled Bingham grout propagation in 2D structured networks. Deng et al., (2018) 
simulated Bingham grout penetration in 3D fracture networks using a computational fluid 
dynamics (CFD) approach. In general, these studies only considered grouts as Bingham 
fluids. Most previous studies have not been validated, except that Hässler (1991), Erisson 
et al., (2000), and Mohajerani et al., (2017) compared their simulation results with the 
experimental data by Håkansson (1987).  Moreover, most previous studies only illustrated 
grout flow in regular channels or pipe networks with simple geometries without 
considering important geological features of rock fracture networks, except Mohajerani 
et al., (2017) and Deng et al., (2018), and also without considering impacts of rheological 
properties and natural hydraulic variability. It is known that the fracture network structure 
and hydraulic aperture variability has important effects on the groundwater flow and 
solute transport processes in fractured rocks (e.g., Long et al 1982; Cacas et al., 1990; 
Baghbanan and Jing 2007; Dershowitz et al., 2007; Cvetkovic and Frampton 2012; 
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Dreuzy et al., 2012; Frampton et al., 2019). However, the impacts of network structure 
and hydraulic variability as well as rheological properties on cement grout propagation in 
water-saturated fracture networks remain open issues. 

1.2 Objectives 

The general objective of this project is to improve predictions, design, and execution of 
rock grouting, by introducing numerical simulations and possibly new rheological models 
for cement-based grouts. We attempt to fill aforementioned knowledge gaps by modeling 
cement grouts propagation in a single fracture and 2D fracture networks, by considering 
the presence of water flow and fracture network structures with variable hydraulic 
apertures. Our focuses are on the impact of i) complex geometrical conditions (i.e., 
surface roughness, fracture network structures and aperture variability) and ii) complex 
non-Newtonian rheological properties (i.e., yield stress and time-dependent viscosity) on 
grout propagation in rock fractures. Our specific objectives are:  

(1) Clarify the confusion existing in the two solutions regarding the shape of the plug
flow region in 2D radial flow of a Bingham fluid for application of the RTGC method.

(2) Evaluate the discrepancy in the two solutions based on the two alternative shapes of
the plug flow region in 2D radial flow of a Bingham fluid for theoretical analyses of grout
propagation in rock fractures.

(3) Present the grout volume and flowrate as functions of grouting time and relative
penetration length using the radius-independent plug flow region.

(4) Investigate the impact of surface roughness on non-Newtonian cement grout flow in
rock fractures by numerical simulations of Bingham grout flow in a single rough-walled
fracture.

(5) Present a two-phase flow model of non-Newtonian cement grout propagation
combined with a Reynolds type of equation.

(6) Investigate the potential impact of water flow on grout propagation for different
viscosity ranges.

(7) Illustrate the combined effect of the water phase and grout hardening process for
different parameter ranges.

(8) Extend the two-phase flow model based on a single fracture for simulating cement
grouts (Bingham fluids) propagation in water saturated fracture networks.

(9) Verify the two-phase fracture network model using the benchmark experimental data
by Håkansson (1987).

(10) Illustrate and quantify the two-phase propagation processes of cement grouts in
saturated fracture networks.
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(11) Investigate the impact of fracture network structure and hydraulic variability on
cement grout propagation by statistical analyses of multiple realizations.

(12) Investigate the impact of rheological properties on the propagation process in
saturated fracture networks.

1.3 Publications from this project 

The results of this project have been published or presented in international journals or 
conferences, including: 

(1) Zou L, Håkansson U, Cvetkovic V. Cement grout propagation in two-dimensional
fracture networks: Impact of structure and hydraulic variability.  International Journal of
Rock Mechanics and Mining Sciences. Volume 115, March 2019, Pages 1-10.
https://doi.org/10.1016/j.ijrmms.2019.01.004

(2) Zou L, Håkansson U, Cvetkovic V. Two-phase cement grout propagation in
homogeneous water-saturated rock fractures. International Journal of Rock Mechanics
and Mining Sciences. Volume 106, June 2018, Pages 243–249.
https://doi.org/10.1016/j.ijrmms.2018.04.017.

(3) Zou L, Håkansson U, Cvetkovic V, Analysis of Bingham fluid radial flow in smooth
fractures, Journal of Rock Mechanics and Geotechnical Engineering, Volume 12, Issue
5, October 2020, Pages 1112-1118. https://doi.org/10.1016/j.jrmge.2019.12.021

(4) Zou L, Håkansson U, Cvetkovic V, Reply to Discussion on ‘Analysis of Bingham
fluid radial flow in smooth fractures’, Journal of Rock Mechanics and Geotechnical
Engineering, in press. https://doi.org/10.1016/j.jrmge.2021.04.001

(5) Zou L, Håkansson U, Cvetkovic V, Yield-power-law fluid propagation in water-
saturated fracture networks with application to rock grouting, Tunnelling and
Underground Space Technology, Volume 95, 2020, 103170.
https://doi.org/10.1016/j.tust.2019.103170

(6) Zou L, Håkansson U, Cvetkovic V, Radial propagation of yield-power-law fluids into
water-saturated homogeneous fractures with application to rock grouting, Volume 130,
June 2020, 104308. https://doi.org/10.1016/j.ijrmms.2020.104308.

(7) Zou L, Håkansson U, Cvetkovic V, Characterization of effective transmissivity for
cement grout flow in rock fractures, the 9th Nordic Grouting Symposium, September 2-
3, 2019, Helsinki, Finland.

(8) Zou L, Håkansson U, Cvetkovic V, Cement grout propagation in 2D fracture
networks: impact of rheology, the 14th ISRM congress, September 13-18, 2019, Foz do
Iguaçu, Brazil.

(9) Zou L, Håkansson U, Cvetkovic V, Non-Newtonian grout flow in single rough-walled
rock fractures, Bergdagarna 2019. March 19, 2019, Stockholm.
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(10) Zou L, Håkansson U, Cvetkovic V, Impacts of Elastic Jacking on Rock Grouting, In
Proceeding of the 10th Asian Rock Mechanics Symposium, 29 October to 03 November
2018, Singapore.

(11) Zou L, Håkansson U, Cvetkovic V. Modeling of rock grouting in saturated variable
aperture fractures. Bergdagarna 2018. March 20, 2018, Stockholm.

(12) Zou L, Håkansson U, Cvetkovic V. Non-Newtonian fluid flow in 2D fracture
networks. AGU Fall Meeting 2017. 11-15 Dec. 2017, New Orleans.
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2. SINGLE-PHASE BINGHAM GROUT RADIAL FLOW IN
HOMOGENEOUS FRACTURES

As mentioned in Section 1.1, there were two solutions for single-phase Bingham grout 
radial flow in homogeneous fractures in the literature that has caused confusion in the 
rock grouting research community. In this Chapter, we present our analyses of single-
phase Bingham grout radial flow in homogeneous fractures based on the assumption that 
the vertical velocity across the aperture is negligible. More details can be found in Zou et 
al. (2020) and Hoang et al. (2020). More details of the other solution with considering the 
vertical velocity can be found in Dai and Bird (1981) and Gustafson et al. (2013). More 
detailed discussions of the two solutions can be found in Hoang et al. (2020) and Zou et 
al. (2021).  

2.1 Physical considerations and assumptions 

Figure 1 presents the physical system of grouting in 2D radial flow for an idealized planar 
fracture represented by a pair of parallel disks. The fracture hydraulic aperture is 2B (it is 
often characterized by hydraulic test in applications). The cement grout; considered 
behaving as a Bingham fluid; is injected through a perpendicular borehole with a constant 
effective grout pressure  𝑃𝑃𝑔𝑔 . The radius of the injection borehole is  𝑟𝑟0 . The pressure 
gradient between the grout pressure and the in-situ groundwater pressure  𝑃𝑃𝑤𝑤 propagate 
the grout from the borehole into the fracture. Cross-section A-A shows the grout 
propagating in the fracture. The distance between the borehole and the grout front 
represents the penetration length 𝐼𝐼(𝑡𝑡), which is a function of the grouting time.  

It is assumed that the viscosity of the cement grout (approximately 0.01-0.015 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠) is 
higher than the viscosity of groundwater (normally around 0.001 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠) and that the 
pressure drop for the groundwater flow is negligible (i.e., the pressure of groundwater is 
constant). Therefore, at each snapshot in time of the grouting process, the flow of grout 
can be simplified as steady-state radial flow. In our analysis, it is also assumed that the 
grout is incompressible, inertial effects are negligible and that the pressure gradient and 
vertical velocity across the aperture is negligible in our analysis since the fracture aperture 
is much smaller than its lateral dimensions. 
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Figure 2 Schematic of grouting with 2D radial flow. 

2.2 Mathematical model for radial flow of single-phase Bingham fluid 

Given the above assumptions, mass and momentum conservation leads to the following 
governing equations for 2D radial flow: 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟 𝑣𝑣𝑟𝑟) = 0 (1) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

= 0 (2) 

where 𝑣𝑣𝑟𝑟 is the radial velocity, 𝑃𝑃 is the pressure and 𝜏𝜏𝑧𝑧𝑧𝑧 is the shear stress. For a Bingham 
fluid, the shear stress 𝜏𝜏𝑧𝑧𝑧𝑧 is expressed as 

�
𝜏𝜏𝑧𝑧𝑧𝑧 = 𝜏𝜏0 + 𝜇𝜇 𝜕𝜕𝑣𝑣𝑟𝑟

𝜕𝜕𝜕𝜕
         �𝜕𝜕𝑣𝑣𝑟𝑟

𝜕𝜕𝜕𝜕
� > 0

𝜏𝜏𝑧𝑧𝑧𝑧 < 𝜏𝜏0
𝜕𝜕𝑣𝑣𝑟𝑟
𝜕𝜕𝜕𝜕

= 0
(3) 

where 𝜏𝜏0 is the yield stress. The boundary conditions for this system are 

𝑃𝑃(𝑟𝑟 = 𝑟𝑟0) = 𝑃𝑃𝑔𝑔,𝑃𝑃�𝑟𝑟 = 𝑟𝑟𝑔𝑔� = 𝑃𝑃𝑤𝑤 (4) 

𝑣𝑣𝑟𝑟(𝑟𝑟, 𝑧𝑧 = ±𝐵𝐵) = 0 (5) 
𝜕𝜕𝑣𝑣𝑟𝑟
𝜕𝜕𝜕𝜕
�𝑟𝑟, 𝑧𝑧 = ±𝑧𝑧𝑝𝑝� = 0 (6) 

Equation (4) represents the known pressure boundary conditions; equation (5) denotes 
the no-slip boundary condition at the fracture walls, and equation (6) represents the zero-
shear rate condition in the plug flow region.  
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2.3 Analytical solution for radial flow of single-phase Bingham fluid  

Equation (1) implies that 𝑟𝑟𝑣𝑣𝑟𝑟 is a function independent of 𝑟𝑟, but dependent on the radial 
angle 𝜃𝜃  and the vertical coordinate 𝑧𝑧 , i.e., 𝑟𝑟𝑣𝑣𝑟𝑟 = 𝑓𝑓(𝜃𝜃, 𝑧𝑧). In addition, the solution of 
radial velocity 𝑣𝑣𝑟𝑟 is expected to be symmetrical with respect to the z-axis, i.e., the solution 
is independent on 𝜃𝜃. Therefore, the radial velocity 𝑣𝑣𝑟𝑟 can be expressed as 

𝑟𝑟 𝑣𝑣𝑟𝑟 = 𝑓𝑓(𝑧𝑧), 𝑣𝑣𝑟𝑟 = 𝑓𝑓(𝑧𝑧)
𝑟𝑟

                                                                       (7) 

By invoking equations (3) and (7) into equation (2), we get 

−𝑟𝑟 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜇𝜇 𝜕𝜕2𝑓𝑓(𝑧𝑧)
𝜕𝜕𝑧𝑧2

= 𝑎𝑎0                                                                           (8) 

where 𝑎𝑎0 is an integration constant. By integrating both sides of equation (8) separately, 
we obtain 

𝑃𝑃 = −𝑎𝑎0 ln(𝑟𝑟) + 𝑎𝑎1 = 𝑃𝑃𝑤𝑤−𝑃𝑃𝑔𝑔
ln�

𝑟𝑟𝑔𝑔
𝑟𝑟0
�

ln(𝑟𝑟) + 𝑃𝑃𝑔𝑔 −
𝑃𝑃𝑤𝑤−𝑃𝑃𝑔𝑔
ln�

𝑟𝑟𝑔𝑔
𝑟𝑟0
�

ln(𝑟𝑟0)                                (9) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑎𝑎0
𝑟𝑟

= 𝑃𝑃𝑤𝑤−𝑃𝑃𝑔𝑔
ln�

𝑟𝑟𝑔𝑔
𝑟𝑟0
�

 1
𝑟𝑟
                                                                                       (10) 

𝜕𝜕𝜕𝜕(𝑧𝑧)
𝜕𝜕𝜕𝜕

= 𝑎𝑎0
𝜇𝜇
𝑧𝑧 + 𝑎𝑎2 = 𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤

ln�
𝑟𝑟𝑔𝑔
𝑟𝑟0
�

 1
𝜇𝜇

(𝑧𝑧 − 𝑧𝑧𝑝𝑝)                                                              (11) 

 𝑓𝑓(𝑧𝑧) = 𝑎𝑎0
2𝜇𝜇
𝑧𝑧2 + 𝑎𝑎2𝑧𝑧 + 𝑎𝑎3 = 1

2𝜇𝜇
𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤
ln�

𝑟𝑟𝑔𝑔
𝑟𝑟0
�

(𝑧𝑧2 − 𝐵𝐵2) − 𝑧𝑧𝑝𝑝
𝜇𝜇
𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤
ln�

𝑟𝑟𝑔𝑔
𝑟𝑟0
�

(𝑧𝑧 − 𝐵𝐵)               (12) 

where 𝑎𝑎1, 𝑎𝑎2 and 𝑎𝑎3 are integration constants that can be determined by introducing the 
boundary conditions, i.e., equations (4-6), written as 𝑎𝑎0 = 𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤

ln�
𝑟𝑟𝑔𝑔
𝑟𝑟0
�
, 𝑎𝑎1 = 𝑃𝑃𝑔𝑔 + 𝑎𝑎0 ln(𝑟𝑟0), 

𝑎𝑎2 = −𝑎𝑎0
𝜇𝜇
𝑧𝑧𝑝𝑝 and 𝑎𝑎3 = −�𝑎𝑎0

2𝜇𝜇
𝐵𝐵2 − 𝑎𝑎0𝑧𝑧𝑝𝑝

𝜇𝜇
𝐵𝐵�, and 𝑧𝑧𝑝𝑝 is half of the plug flow region. It is 

worth mentioning that in the solution by Gustafson and Claesson (2005) and Gustafson 
et al. (2013) they did not use the mass balance equation to determine the pressure as in 
equation (9). Instead, they deduced a complicated solution by solving the implicit 
differential equation for the pressure. 

The solution of the velocity, 𝑣𝑣𝑟𝑟, is an even function of  𝑧𝑧. For the upper half aperture, 0 <
𝑧𝑧 ≤ 𝐵𝐵, the velocity can be expressed as   

𝑣𝑣𝑟𝑟(𝑧𝑧𝑝𝑝 ≤ 𝑧𝑧 ≤ 𝐵𝐵) = 1
2𝜇𝜇
�− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (𝑧𝑧2 − 𝐵𝐵2) − 𝑧𝑧𝑝𝑝

𝜇𝜇
�− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (𝑧𝑧 − 𝐵𝐵)                       (13)           

𝑣𝑣𝑟𝑟(0 ≤ 𝑧𝑧 < 𝑧𝑧𝑝𝑝) = 1
2𝜇𝜇
�− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� �𝑧𝑧𝑝𝑝2 − 𝐵𝐵2� − 𝑧𝑧𝑝𝑝

𝜇𝜇
�− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� �𝑧𝑧𝑝𝑝 − 𝐵𝐵�                    (14) 

By integration of the velocity across the aperture, the flowrate Q is obtained as 
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𝑄𝑄 = 2∫ 2𝜋𝜋𝜋𝜋 𝑣𝑣𝑟𝑟
𝐵𝐵
0 𝑑𝑑𝑑𝑑 = −2𝜋𝜋𝜋𝜋 𝐵𝐵3

3𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�2 − 3 𝑧𝑧𝑝𝑝

𝐵𝐵
+ 𝑧𝑧𝑝𝑝3

𝐵𝐵3
� = 2𝜋𝜋 𝐵𝐵3

3𝜇𝜇
(𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤)

ln�
𝑟𝑟𝑔𝑔
𝑟𝑟0
�
�1 − 𝑧𝑧𝑝𝑝

𝐵𝐵
�
2
�2 + 𝑧𝑧𝑝𝑝

𝐵𝐵
�  (15) 

Since ∂P
∂z

= 0 is assumed, the pressure is a function of r only (see equation 10). The 
momentum equation (2) is integrated over z to obtain 

𝜏𝜏𝑧𝑧𝑧𝑧 = �− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑧𝑧 + 𝐶𝐶                                                                        (16) 

where C is an integration constant to be determined by introducing the boundary condition 
at 𝑧𝑧 = 𝑧𝑧𝑝𝑝 (the interface between the solid and fluid regions), i.e., equation (6), as  𝐶𝐶 =

𝜏𝜏0 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑧𝑧𝑝𝑝. For the fluid part, the shear stress is 

𝜏𝜏𝑧𝑧𝑧𝑧 = 𝜏𝜏0 + �− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� (𝑧𝑧 − 𝑧𝑧𝑝𝑝)                                                         (17) 

For the solid (plug) region (i.e., 0 ≤ 𝑧𝑧 < 𝑧𝑧𝑝𝑝), the shear rate is 0, and the shear stress is 
explicitly given by the definition of Bingham model, i.e., 𝜏𝜏𝑧𝑧𝑧𝑧 < 𝜏𝜏0. It implies that the 
shear stress can be any value below the yield stress in the plug flow region.   

Determining the plug flow region is an important step to obtain the complete analytical 
solution for radial flow of Bingham fluids. The simplest and most straightforward way to 
determine the plug flow region is by using a force balance. Specifically, the difference 
between the force at the injection borehole and at the grout penetration front is equal to 
the total friction force on the wall surfaces. This can be expressed as 

2∫ 𝜏𝜏𝑤𝑤
𝑟𝑟𝑔𝑔
𝑟𝑟0

𝑑𝑑𝑑𝑑 = 2𝐵𝐵(𝑃𝑃𝑔𝑔 − 𝑃𝑃𝑤𝑤)                                                          (18) 

where the shear stress on the wall 𝜏𝜏𝑤𝑤 is  

                                   𝜏𝜏𝑤𝑤 = 𝜏𝜏0 + �− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� (𝐵𝐵 − 𝑧𝑧𝑝𝑝)                                                       (19) 

The integration of shear stress on the wall gives 𝜏𝜏0�𝑟𝑟𝑔𝑔 − 𝑟𝑟0� + �𝑃𝑃𝑔𝑔 − 𝑃𝑃𝑤𝑤��𝐵𝐵 − 𝑧𝑧𝑝𝑝�. Half 
of the plug flow region 𝑧𝑧𝑝𝑝 can then be obtained as 

𝑧𝑧𝑝𝑝 = 𝜏𝜏0(𝑟𝑟𝑔𝑔−𝑟𝑟0)
𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤

                                                                      (20) 

which implies that the plug flow region is independent of the radius 𝑟𝑟, i.e., it is constant 
along the radial distance. Since the shear stress and pressure are independent of the 
circumferential angle, we can take the radial cross-section A-A (see Figure 1) to illustrate 
the force balance in Figure 3. Note that the same radius-independent plug flow region can 
also be determined by using the energy dissipation equation (El Tani, 2012). 

Quantifying the shear stress is a key step that has led to different plug flow regions, 
following from different ways of determining the integration constant C in equation (16). 
It is common to assume that C=0, i.e., 𝜏𝜏𝑧𝑧𝑧𝑧 = 0 for 𝑧𝑧 = 0; such a condition however is 
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applicable only for fluids without yield stress, e.g., Newtonian and power-law fluids. Dai 
and Bird (1981) essentially adapted this assumption from the solution of 1D slit flow by 
a similarity or analogy argument. For Bingham fluid flow in a 1D channel, half of the 
plug flow region is 

 𝑧𝑧𝑝𝑝 = 𝜏𝜏0 �
∆𝑃𝑃
𝐿𝐿
�
−1

                                                                   (21) 

where ∆𝑃𝑃 and 𝐿𝐿 are the pressure difference and distance between the injection inlet and 
the fracture length, respectively (Bird et al. 1960). In the solution for 2D radial flow by 
Dai and Bird (1981), half of the plug flow region is obtained by replacing  ∆𝑃𝑃

𝐿𝐿
 with  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  in 

equation (21). The plug flow region then becomes a function of the radius 𝑟𝑟, since 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is a 
nonlinear function of the radius, according to equation (10). This yields a different result 
for the flowrate or grouting penetration from the case when C≠0 in equation (16). A 
schematic illustration of radius-independent and radius-dependent plug flow regions for 
radial 2D flow is shown in Figure 3. 

 

Figure 3 demonstration of shear stress, plug flow region and force balance in a cross-
section for radial flow of Bingham fluids. 

2.4 Quasi-steady solution: theory for the RTGC method 

The grout penetration length is connected with the mean velocity of the grout front 𝑣𝑣𝑟𝑟� , 
written as (Gustafson and Claesson, 2005) 

𝑣𝑣𝑟𝑟� = 𝑄𝑄
𝐴𝐴

 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

                                                                                                (22) 

where 𝐴𝐴 denotes the surface area of the grout front (i.e.,  𝐴𝐴 = 4𝐵𝐵𝐵𝐵𝑟𝑟𝑔𝑔) and 𝐼𝐼 denotes the 
penetration length (i.e., 𝐼𝐼 = 𝑟𝑟𝑔𝑔 − 𝑟𝑟0 ). Note that the maximum penetration length will be 
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reached when the plug flow region equals to the aperture, i.e., 𝑧𝑧𝑝𝑝 = 𝐵𝐵 . Hence, the 
maximum penetration length 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 can be obtained as 

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐵𝐵(𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤)
𝜏𝜏0

                                                                                         (23) 

The relative penetration length is defined as 

    𝐼𝐼𝐷𝐷 = 𝐼𝐼
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

= 𝜏𝜏0(𝑟𝑟𝑔𝑔−𝑟𝑟0)
𝐵𝐵(𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤)

                                                                                  (24) 

Inserting the constant plug flow region, i.e., equation (20) into equation (24) yields 

    𝐼𝐼𝐷𝐷 = 𝑧𝑧𝑝𝑝
𝐵𝐵

                                                                                                       (25) 

It reveals that the relative penetration length equals to the relative width of the plug flow 
region (i.e., the ratio of plug flow region to the aperture) for 2D radial flow, which is the 
same as for 1D channel flow. 

Substituting equations (15) and (24) into equation (22) yields  

𝑑𝑑𝐼𝐼𝐷𝐷
𝑑𝑑𝑑𝑑

= 𝜏𝜏02

6𝜇𝜇�𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤�
∙  1
𝐼𝐼𝐷𝐷
∙  𝐼𝐼𝐷𝐷𝐵𝐵�𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤� 𝜏𝜏0⁄
𝐼𝐼𝐷𝐷𝐵𝐵�𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤� 𝜏𝜏0⁄ +𝑟𝑟0

∙  (2−3 𝐼𝐼𝐷𝐷+ 𝐼𝐼𝐷𝐷3)
ln (𝐼𝐼𝐷𝐷𝐵𝐵�𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤� 𝜏𝜏0⁄ 𝑟𝑟0+1)

                     (26) 

For simplicity, a dimensionless time 𝑡𝑡𝐷𝐷 = 𝑡𝑡/𝑡𝑡0 = 𝑡𝑡𝜏𝜏02

6𝜇𝜇(𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤)
 and parameter 𝛾𝛾 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟0
=

𝐵𝐵(𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤)
𝑟𝑟0𝜏𝜏0

 were introduced by Gustafson and Claesson (2005), to obtain the relative 

penetration function. Equation (26) can then be rewritten as 

𝑑𝑑𝐼𝐼𝐷𝐷
𝑑𝑑𝑡𝑡𝐷𝐷

= (2−3 𝐼𝐼𝐷𝐷+ 𝐼𝐼𝐷𝐷3)
(𝐼𝐼𝐷𝐷+1 𝛾𝛾⁄ )ln (𝐼𝐼𝐷𝐷𝛾𝛾+1)

 ,      𝑑𝑑𝑡𝑡𝐷𝐷
𝑑𝑑𝐼𝐼𝐷𝐷

=  (𝐼𝐼𝐷𝐷+1 𝛾𝛾⁄ )ln (𝐼𝐼𝐷𝐷𝛾𝛾+1)
(2−3 𝐼𝐼𝐷𝐷+ 𝐼𝐼𝐷𝐷3)

                                     (27) 

The closed-form solution of grouting time with the relative penetration length can be 
obtained by integration of equation (27), which was presented in El Tani (2012). The 
exact formula for the closed-form solution is complicated and contains series 
approximation. In practice, equation (27) can be easily solved by numerical integration 
methods. Note that using the radius-dependent plug flow region and considering the 
vertical velocity across the aperture, Gustafson and Claesson (2005) obtained a different 
and more complicated solution for the relative penetration function. 

In addition to the grout penetration length, the injected grout volume and flowrate as 
functions of grouting time are of great importance in grouting design and practice, since 
they are often taken as stop criteria for grouting (Gustafson and Claesson, 2005; 
Gustafson and Stille 2005; Kobayashi et al. 2008; Rafi and Stille 2014; Stille 2015). The 
injected grout volume 𝑉𝑉𝑔𝑔 can be obtained through the grout penetration length 𝐼𝐼, written 
as (Gustafson and Claesson, 2005) 

𝑉𝑉𝑔𝑔 = 2𝜋𝜋𝜋𝜋[(𝑟𝑟0 + 𝐼𝐼)2 − 𝑟𝑟02] = 2𝜋𝜋𝜋𝜋𝐼𝐼2(1 + 2𝑟𝑟0/𝐼𝐼)                                              (28) 
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The maximum injection volume 𝑉𝑉𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚 arrives when 𝐼𝐼 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚, which is 

𝑉𝑉𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚  = 2𝜋𝜋𝜋𝜋𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚2(1 + 2/𝛾𝛾)                                                                           (29) 

where 𝛾𝛾 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚/𝑟𝑟0. Then the relative volume of injected grout is  

𝑉𝑉𝐷𝐷 = 𝑉𝑉𝑔𝑔
𝑉𝑉𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚

= 𝐼𝐼𝐷𝐷2 ∙
1+2/𝛾𝛾𝐼𝐼𝐷𝐷
1+2/𝛾𝛾

                                                                                  (30) 

where is the relative penetration length, 𝐼𝐼𝐷𝐷 = 𝐼𝐼/𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 . Using our proposed formula of 
relative penetration rate, i.e., equation (27), the evolution of grouting flowrate 𝑄𝑄𝑔𝑔 can be 
determined according to its definition, written as 

𝑄𝑄𝑔𝑔 = 𝑑𝑑𝑉𝑉𝑔𝑔
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑉𝑉𝐷𝐷
𝑑𝑑𝑡𝑡𝐷𝐷

∙ 𝑉𝑉𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡0
= 2𝐼𝐼𝐷𝐷+2/𝛾𝛾

1+2/𝛾𝛾
∙ 𝑑𝑑𝐼𝐼𝐷𝐷
𝑑𝑑𝑡𝑡𝐷𝐷

∙ 𝑉𝑉𝑔𝑔,𝑚𝑚𝑚𝑚𝑥𝑥

𝑡𝑡0
= 2𝐼𝐼𝐷𝐷+2/𝛾𝛾

1+2/𝛾𝛾
∙ (2−3 𝐼𝐼𝐷𝐷+ 𝐼𝐼𝐷𝐷3)

(𝐼𝐼𝐷𝐷+1 𝛾𝛾⁄ )ln (𝐼𝐼𝐷𝐷𝛾𝛾+1)
∙ 𝑉𝑉𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡0
        (31) 

A simplified empirical formula of relative penetration as function of dimensionless 
grouting time was proposed by Gustafson and Stille (2005) to approximate the evolution 
of flowrate, due to the complexity of the original solution of grout penetration that was 
developed in Gustafson and Claesson (2005) and Gustafson et al (2013). However, by 
using the solution with radius-independent plug flow region and without considering the 
vertical velocity, a closed-form solution of flowrate as function of grouting time can 
explicitly be obtained for the first time without any approximation; the result is shown in 
equation (31). This closed-form solution of the flowrate can be directly applied for control 
and monitoring in grouting practice.  

2.5 Illustration examples: comparison of the two solutions 

The results of penetration length and flowrate from the two solutions are compared within 
the full range of relative penetration length, shown in Figures 4 and 5. According to the 
theoretical analysis, the steering parameter in the functions of relative penetration length, 
injected grout volume and flowrate is 𝛾𝛾 . The relative penetration and the flowrate 
evolution curves for different  𝛾𝛾 values are calculated and compared in Figures 4 and 5. 
The adopted parameters (typically used in grouting practice) for the calculation of 
flowrate are summarized in Table 1. 

Table 1. Grouting parameters for the illustration example 

Parameters Units Values 

Aperture, 2B [µm] 100 

Borehole radius, 𝒓𝒓𝟎𝟎 [m] 0.025 

Viscosity of grout, 𝝁𝝁 [Pa∙s] 0.025 

Yield stress of grout, 𝝉𝝉𝟎𝟎 [Pa] 5 

Grouting pressure, 𝑷𝑷𝒈𝒈 − 𝑷𝑷𝒘𝒘   [MPa] 0.025, 0.25, 0.75 and 2.5 
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Steering parameter, 𝜸𝜸 [-] 10, 100, 300 and 1000 

Characteristic time, 𝒕𝒕𝟎𝟎 [min] 2.5, 25, 75 and 250 

Maximal penetration, 𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎 [m] 0.25, 2.5, 7.5 and 25 

Maximal injection volume, 𝑽𝑽𝒈𝒈,𝒎𝒎𝒎𝒎𝒎𝒎 [L] 0.024, 2.00, 17.79 and 196.74 
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Figure 4 Comparison between and the two approximate analytical solutions of the relative 
penetration length with dimensionless grouting time (a) and (b) log-log plot of the 
complementary relative penetration length (1-  𝐼𝐼𝐷𝐷 ), highlighting the discrepancy in 
relatively longer grouting time (i.e., 𝑡𝑡𝐷𝐷 > 1). 

 

10 -4 10 -2 10 0 10 2

Dimensionless time t
D

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
pe

ne
tr

at
io

n 
le

ng
th

 I
D

R
el

at
iv

e 
pl

ug
 fl

ow
 r

eg
io

n 
z

p
/B

=10, Zou et al. (2020)
=10, Gustafson et al. (2013)
=100, Zou et al. (2020)
=100, Gustafson et al. (2013)
=300, Zou et al. (2020)
=300, Gustafson et al. (2013)
=1000, Zou et al. (2020)
=1000, Gustafson et al. (2013)

10 -4 10 -2 10 0 10 2

Dimensionless time t
D

10 -2

10 -1

10 0

C
om

pl
em

en
ta

ry
 r

el
at

iv
e 

pe
ne

tr
at

io
n 

le
ng

th
 1

-I
D

C
om

pl
em

en
ta

ry
 r

el
at

iv
e 

pl
ug

 fl
ow

 r
eg

io
n 

1-
z

p
/B

=10, Zou et al. (2020)
=10, Gustafson et al. (2013)
=100, Zou et al. (2020)
=100, Gustafson et al. (2013)
=300, Zou et al. (2020)
=300, Gustafson et al. (2013)
=1000, Zou et al. (2020)
=1000, Gustafson et al. (2013)

(a) 

(b) 



16 
 

BeFo Report 200 
 

  

 

 

Figure 5 Comparison between and the two approximate analytical solutions of the grout 
flowrate evolution with (a) dimensionless grouting time and (b) relative penetration 
length. 

As shown in Figure 4a, the grout penetration is increasing but decelerating with time, 
regardless of the parameter 𝛾𝛾. In contrast, the grout flowrate is decreasing with grouting 
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time (Figure 5a) as well as the relative penetration length (Figure 5b). With the increase 
of 𝛾𝛾, the penetration becomes relatively slower, and the corresponding flowrate becomes 
relatively larger. By using the penetration and flowrate functions, the grouting process 
can be fully defined for design, monitoring and quality assurance in grouting applications. 

In general, the results of the two approximate solutions are in good agreement, especially 
within a shorter penetration distance (i.e.,  𝐼𝐼𝐷𝐷 < 0.5) and a lower dimensionless time 
(i.e.,  𝑡𝑡𝐷𝐷 < 1). With the increases of penetration distance and grouting time, the two 
solutions gradually deviate in a small range. A log-log plot of the complementary relative 
penetration length (1- 𝐼𝐼𝐷𝐷) is presented in Figure 4b, to highlight the discrepancy in the 
relatively longer grouting time (i.e., 𝑡𝑡𝐷𝐷 > 1). Such deviations demonstrated that the two 
solutions are not exactly identical, but the differences in results of penetration distance 
and flowrate between the two solutions are negligible.  

2.6 Discussion on the two solutions 

Recently, Hoang et al. (2021) discussed our paper Zou et al. (2020). In our paper, we 
made a statement that Dai and Bird’s solution for 2D radial Bingham fluid flow between 
parallel plates violates mass balance. Hoang et al. (2020) pointed out that Dai and Bird’s 
solution does not violate the mass balance because Dai and Bird’s solution and our 
analysis are based on different assumptions, i.e., with consideration of the vertical 
velocity component in the continuity equation or not, which leads to two different 
approximation models. This discussion helps to thoroughly clarify the existing confusion 
in the two solutions for analyzing rock grouting. Specifically, the confusion regarding 
Dai and Bird’s solution and its application to rock grouting has been raised because no 
explicit mathematical models, i.e., the governing equations, were presented either in Dai 
and Bird (1981) nor in the following rock grouting literature, e.g., Gustafson et al. (2013).  
In the discussion by Hoang et al. (2021), the governing equations of the two 
approximation models with associated solutions were clearly summarized in their 
Equations 5, 6 and 7, indicating that the two models are based on different assumptions, 
i.e., with or without considering the vertical velocity. 

Note that the shape of the plug flow region varies in the two different approximation 
models. Specifically, the plug flow region in the model presented in Zou et al. (2020) is 
independent of the radius; whereas in the model (Equations 5, 6 and 7) presented in Hoang 
et al. (2021), the plug flow region increases with the radius. In higher orders of 
approximation models, the plug flow region can be more complex (e.g., Muravleva 2017).  
The reason for the obtained different shapes of plug flow region in the two approximation 
models is indicated in the discussion by Hoang et al. (2021), which is due to the 
application of different boundary conditions for the shear stress. Specifically, we use the 
boundary condition on the surface of the plug flow region, while the other model sets 
shear stress equal to zero in the middle of the fracture aperture in the plug flow region.  
We think that the shear stress in the plug region is undefined according to the definition 
of the Bingham model, which only defines that the shear stress is below the yield stress 
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in the plug flow region (it implies that the shear stress can be any value below the yield 
stress in the plug flow region), see Equation 3 in Zou et al. (2020) or Equations 1 and 2 
in Hoang et al. (2021). Moreover, the Bingham model is an idealized rheological model 
and its validity for any realistic fluids remains an open question (Barnes 1999). Therefore, 
the real shape of the plug flow region for realistic fluids/grouts or even the existence of a 
rigid plug flow region remains unknown at this point.  

With the understanding that Dai and Bird’s solution and our analysis are two separate 
approximation models, we should clarify that the two types of analytical solutions for 
rock grouting, presented in Gustafson et al. (2013) and Zou et al. (2020), respectively, are 
both approximation solutions, i.e., neither of them is an exact solution. However, as noted 
in the discussion by Hoang et al. (2021), the solution presented in Zou et al. (2020) is 
much simpler compared to the one based on Dai and Bird’s solution. More importantly, 
the solution presented in Zou et al., (2020) is more relevant to the boundary condition 
commonly applied in rock grouting with a controlled injection pressure, where the 
solution for the pressure is explicit with respect to the boundary pressures (see Equations 
9 and 10). In contrast, Dai and Bird’s solution is more relevant to the boundary condition 
of known constant flowrate, where the solution for the pressure needs to be solved from 
the flowrate equation, i.e., Equation 4 in Hoang et al. (2021). Considering that the 
difference between solutions from the two models is relatively small (see Figure 6 in 
Hoang et al., 2021) and that the predicted grout propagation lengths using the two models 
are very close (see Figures 4 and 5), it is recommended using the simpler solution 
presented in this report for rock grouting analysis in practice. 
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3. SINGLE-PHASE BINGHAM GROUT FLOW IN SINGLE 
ROUGH-WALLED FRACTURES 

In this Chapter, we present numerical simulation results of single-phase Bingham grout 
flow in single rough-walled fractures, aiming to investigate the impact of fracture surface 
roughness on Bingham grout flow in natural rock fractures. More details can be found in 
Zou et al (2019). 

3.1 Governing equations for Bingham fluids flow 

The general governing equations based on mass and momentum conservation for 
incompressible fluid flow can be written as 

∇ ∙ u = 0                                                                                                         (32) 
∂
∂t

(ρu) + ρ u ∙ ∇u = −∇pI + ∇ ∙ τ + ρg                                                         (33) 

where u (m/s) is the fluid velocity vector, ρ is fluid density, t is time, P is pressure, I is 
the identity matrix and g is acceleration of gravity. 

The linear Bingham rheology model was widely adopted for theoretical analyses in the 
past decades, given by 

�
τij = � τ0

�γ̇ij�
+ μB�  γ̇ij,                   �τij� > τ0

γ̇ij = 0                                          otherwise
                                                      (34) 

where 𝜏𝜏𝑖𝑖𝑖𝑖 is shear stress tensor, 𝛾̇𝛾𝑖𝑖𝑖𝑖is the shear rate (rate-of-strain) tensor, τ0 is the yield 
stress and μB is the plastic viscosity. The Bingham fluid is an idealized non-Newtonian 
fluid that may not exist in reality. Papanastasiou (1987) developed a modified Bingham 
model (referred to as the Bingham-Papanastasiou model) by adding an exponential term 
to smoothly approximate the yield stress, which is able to represent the more realistic 
visco-plastic behavior of non-Newtonian fluids, written as 

τij = �μB + τ0
�γ̇ij�

�1 − exp(−m�γ̇ij�)��  γ̇ij                                                       (35) 

where the m  is an exponential index. As m  is relatively large, i.e., m = 100 , the 
Bingham-Papanastasiou model approaches the Bingham model. The Bingham-
Papanastasiou model is valid for all regions, both yielded and un-yielded. Therefore, it 
avoids determining the yield surface, which brings important advantages especially for 
numerical modeling. 
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3.2 Numerical simulation results 

We extended our in-house code FracFlow to directly simulate the Bingham grouts flow 
in a single rock fracture. The FracFlow code is an unstructured finite volume method code 
developed to directly solve fluid flow and solute transport in single rock fractures. The 
detailed numerical schemes can be found in Zou et al. (2015; 2016). A single rough-
walled fracture model has been created from a laser-scanned digital surface of a granite 
rock sample. The detailed statistics of the digital surface and this created fracture model 
can be found in Zou et al. (2014; 2015). For all simulations, the inlet boundaries are set 
with constant flow rate, and the outlet boundaries are set with zero pressure. The upper 
and lower plates are set as no-slip walls, i.e. with zero velocity. The parameters adopted 
for the numerical simulation are summarized in Table 2. 

Table 2 Geometrical and physical parameters adopted for the numerical simulation. 

Parameters Units Values 

Fracture length, L [m] 0.1 

Mean aperture, 2B [m] 1e-3 

Viscosity of grout, 𝝁𝝁𝒈𝒈 [Pa∙s] 0.025 

Yield stress of grout, 𝝉𝝉𝟎𝟎 [Pa] 5 

Density of grout, 𝝆𝝆𝒈𝒈 [kg/m3] 1500 

Reynolds number, 

𝐑𝐑𝐑𝐑 = 𝟐𝟐𝟐𝟐𝟐𝟐𝝆𝝆𝒈𝒈 𝝁𝝁𝒈𝒈⁄    

[-] 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000 
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Figure 6 Overview of velocity distribution in the single rough-walled fracture, (a) Re = 
0.05, (b) Re = 1, (c) Re = 100 and (d) Re = 1000. 

Figure 6 presents representative results of the overall velocity field distributions with Re 
= 0.05, 1, 100 and 1000, where the contour maps represent the magnitude of the velocity 
field, i.e., √𝑢𝑢2 + 𝑣𝑣2 . When the Re is relatively small, i.e., Re ≤ 1, the high velocity 
regions are distributed discretely along the fracture where the aperture is relatively small. 

(a) 

(b) 

(c) 

(d) 
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In contrast, the low velocity regions are distributed near the rough walls where the 
aperture is relatively large including sharp cornered asperities of the wall surfaces. When 
the Re is relatively high Re ≥ 100, the high velocity regions are concentrated in the 
middle of aperture and the relatively low velocity regions become larger than the cases 
with smaller Re. This result presents the flow behaviors of non-Newtonian grouts in 
fractures at different Re values.  

Figure 7 presents the relationship between the flowrate and the overall pressure gradient 
for Bingham grout flow in the rough-walled fracture. The theoretical relationship between 
the flowrate and pressure gradient for the idealized smoothed parallel plates model with 
the same mean aperture (1mm) is also plotted for comparison (the red curve). The 
flowrate for the rough-walled fracture by numerical simulation matches well with the 
theoretical values for the idealized homogeneous fracture when the pressure gradient is 
relatively small (i.e., Re  ≤ 10 ). In contrast, the analytical solution for idealized 
homogeneous fracture significantly overestimates the flowrate for the rough-walled 
fracture when the pressure gradient is relatively large (i.e., Re ≥ 50). 

 

Figure 7 Relationship between the flowrate and overall pressure gradient.  
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Figure 8 Equivalent transmissivity for different Re. 

Figure 8 presents the equivalent transmissivity for different Re. The equivalent 
transmissivity is calculated based on the relationship between the flowrate and overall 
pressure gradient shown in Figure 4. The theoretical equivalent transmissivity for the 
idealized homogeneous fracture with the same mean aperture (1mm) is also presented for 
comparison (the red curve). Obviously, the equivalent transmissivity is a nonlinear 
function of Re, where the theoretical transmissivity increases with increasing Re until 
Re  ≥ 50  because the yield stress caused plug flows become less important with 
increasing of Re. For cases with Re ≤ 10, the equivalent transmissivity for the rough-
walled fracture matches well with that for the idealized homogeneous fracture. It indicates 
that the fracture surface roughness has limited impact on the equivalent transmissivity 
when Re is relatively small, where the plug flow dominates the equivalent transmissivity. 
However, for cases of Re  ≥ 50 , the equivalent transmissivity for the idealized 
homogeneous fracture approaches a constant value whereas the equivalent transmissivity 
for the rough-walled fracture decreases with increasing Re, due to the increasing inertial 
effects. This result indicates that the surface roughness only affect the equivalent 
transmissivity when Re is relatively large, i.e. Re ≥ 50. In grouting, the Re reduces from 
infinite large to 0 (when grout stops), which covers the full range of Re. 
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4. Two-phase unidirectional flow in a single fracture 

In this Chapter, we present a two-phase flow model for modeling of non-Newtonian 
cement grouts propagation in a single water-saturated fracture. More details can be found 
in Zou et al (2018). 

4.1 Physical consideration and mathematical model 

We consider an immiscible two-phase flow process in a single fracture defined by two 
smooth parallel plates. Surface roughness or aperture variability are clearly present in 
natural rock fractures however these are not considered in the present study in order to 
focus on the effect of water flow.  

 

Figure 9 Illustration of cement grout penetration into a single water-saturated fracture. 

Figure 9 presents the conceptual model of grouting with immiscible multiphase flow in a 
water-filled idealized planar fracture, as the basic element of the fracture networks in rock 
masses. The fracture aperture is 2B. The cement grout is considered as a Bingham fluid, 
injected from the left-hand-side of the fracture (i.e. inlet) with a constant effective 
grouting pressure P1, which follows the previous studies and the condition used in the 
RTGC approach. The length of the fracture is L. The water pressure on the right-hand 
side of the fracture (i.e. outlet) is P2. In the grouting process, the grout displaces the 
groundwater in the fracture. The distance between the inlet and the grout front, i.e. the 
interface between grout and water, represents the grout penetration length I(t), which is a 
function of the grouting time. 

According to the same assumptions for single-phase flow, the grouting process of 
immiscible two-phase flow in the fracture can be described by a set of the following 
equations 

∂
∂x
𝑇𝑇(𝐶𝐶) ∂P

∂x
= 0                                                                               (36) 

𝑢𝑢 = 𝑇𝑇(𝐶𝐶)
2𝐵𝐵

 ∂P
∂x

                                                                                    (37) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 ∂𝐶𝐶
∂x

= 0                                                                                 (38) 
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where 𝑇𝑇(𝐶𝐶)  is the transmissivity which is depending on the phase function. The 
transmissivity for the Bingham grout can be written as 

𝑇𝑇(𝐶𝐶 = 1) = − 𝐵𝐵3

3𝜇𝜇𝑔𝑔
�1 − 𝑧𝑧𝑝𝑝′

𝐵𝐵
�
2
�2 + 𝑧𝑧𝑝𝑝′

𝐵𝐵
�                                        (39) 

where 𝜇𝜇𝑔𝑔 is the viscosity of grout, 𝑧𝑧𝑝𝑝′ is half of the plug flow region, determined by the 
yield stress and the pressure gradient between the injection surface and grout penetration 
front I(t), 

 𝑧𝑧𝑝𝑝′ = 𝑚𝑚𝑚𝑚𝑚𝑚 � 𝜏𝜏0I(t)
𝑃𝑃1−𝑃𝑃𝐼𝐼(𝑡𝑡)

,𝐵𝐵�                                                              (40) 

where 𝑃𝑃𝐼𝐼(𝑡𝑡) is the pressure at the interface. For the groundwater, the transmissivity is 
given by the cubic law, expressed by 

𝑇𝑇(𝐶𝐶 = 0) = − 2𝐵𝐵3

3𝜇𝜇𝑤𝑤
                                                                      (41) 

where 𝜇𝜇𝑤𝑤 is the viscosity of groundwater.  

Initially, the fracture is filled with water, i.e. C = 0, at t = 0. The grout is injected into the 
fracture through the inlet boundary under a constant pressure 𝑃𝑃1, i.e. C = 1 and P = 𝑃𝑃1 at 
x = 0 when 𝑡𝑡 > 0. At the outlet boundary, P = 𝑃𝑃2 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 at x = L. 

4.2 Solution method 

The governing equations (36)-(38) are a set of nonlinear partial differential equations, 
since the transmissivity of the Bingham grout is a function of the pressure difference and 
penetration length. A Galerkin finite element method code using the Picard iterative 
method is developed to solve for the nonlinear Reynolds equation. The FEM - rather than 
iteratively solving the pressure at the interface by using the flowrate equation - is used 
because of its advantages in consideration of complex geometry and spatially varying 
properties of the grout for further studies. At each time step, the mesh is refined by adding 
one node at the interface, so that only one pressure value is directly solved at the interface 
node without need for subsequent interpolation; this ensures continuity of the pressure 
field at the interface. The velocity is then calculated by equation (37) after obtaining a 
convergent pressure field.  

The phase transport is a hyperbolic (advection) equation, which is a difficult numerical 
problem in the presence of a sharp interface (i.e. high phase gradient) at the grout front if 
an Eulerian scheme is used. To overcome this numerical difficulty, a Lagrangian interface 
tracking method was adopted to track the grout penetration. The advective interface 
transport follows the motion equation and is written as 

In+1 = In + u(In)∆t                                                                   (42) 
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where I is the position of the interface and ∆t is the time step. Since equation (23) is an 
explicit discretization scheme, the adaptive time step based on the Courant-Friedrichs-
Levy (CFL) condition is used in this study to achieve higher efficiency and maintain 
computational stability for the solution, expressed by 

∆t ≤ ∆x
u

                                                                                        (43) 

where ∆x is a characteristic length assumed to be the mesh size. 

4.3 Evolution of the pressure distribution  

A series of numerical simulations were conducted to illustrate the grouting process and 
investigate the importance of the water phase flow. The adopted model geometry and the 
physical parameters (typically used in rock grouting practice) for the simulation are 
summarized as follows. Three fracture lengths (i.e., L=10 m, 25 m and 50 m), 
corresponding to three values of grout yield stress (i.e., 𝜏𝜏0= 5 Pa, 2 Pa and 1 Pa) are used 
to show the grout yield stress on the sensitivity of penetration process. The fracture 
aperture is 1 mm. The grouting pressure is 100 kPa. Six values of the grout viscosity (i.e., 
𝜇𝜇𝑔𝑔= 0.0025 Pa∙s, 0.005 Pa∙s, 0.01 Pa∙s, 0.05 Pa∙s, 0.075 Pa∙s and 0.1 Pa∙s) are adopted for 
the numerical simulation to demonstrate the impact of grout viscosity. The viscosity of 
water is 0.001 Pa∙s. To evaluate the impacts of water phase flow, simulation results of the 
two-phase flow are compared with the results of single-phase flow where water phase 
flow is neglected; the latter case is simulated by setting water viscosity as 1e-10. 
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Figure 10 Evolution of the pressure distribution along the fracture, for 𝜏𝜏0 = 2Pa,  𝜇𝜇𝑔𝑔 =
 0.01Pa ∙ s. 

Figure 10 presents the evolution of the pressure distribution along the fracture for the two-
phase flow, exemplified by the case when 𝜏𝜏0 = 2Pa, 𝜇𝜇g = 0.01 Pa ∙ s . The pressure 
gradients (the slopes of the pressure curve) in the two phases are different, which is caused 
by the different transmissivity values for the grout and water. The pressure at the interface 
(i.e. grout penetration front) decreases with the growth of penetration length or the 
grouting time. In the case of single-phase grout flow, the pressure at the grout front is 
constant and equal to the in situ groundwater pressure, i.e. P2 = 0 assumed in this study. 
However, this result shows that the pressure at the front is not constant as P2 = 0. It 
indicates that the flow of the water phase also importantly leads to the pressure drop, 
which may be a potential source of uncertainty in application of models that ignore the 
water phase flow.   

4.4 Impact of two-phase flow 

Figure 11 presents a comparison between numerical results for two-phase flow and 
single-phase flow (i.e. in absence of water flow), for different viscosity values of the 
grout. When the viscosity of grout is relatively small, e.g.,  𝜇𝜇𝑔𝑔 = 0.0025 Pa ∙ s  (red 
curves), the penetration curves (movement of the interfaces) exhibit significant 
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discrepancies between the results of two-phase flow and single-phase flow, especially at 
the earlier stage of grouting. The maximum difference is around 6m (~25% of the fracture 
length). The discrepancies decrease for the case when viscosity of the grout is relatively 
large, e.g.,  𝜇𝜇𝑔𝑔 = 0.1Pa ∙ s (black curves). These discrepancies are caused by ignoring the 
water flow in the simulation of single-phase flow. It demonstrates that the water phase 
flow may significantly affect the grout penetration process especially when the viscosity 
of grout is relatively small. 

  

Figure 11 Comparison of simulation results between two-phase flow and single-phase 
flow, for 𝜏𝜏0 = 2Pa. 
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Figure 12 The maximum relative difference (MRD) of the penetration length between the 
results of two-phase flow and single-phase flow for different viscosity ratios (between 
grout and water) and yield stresses. 

To further quantitatively illustrate the impacts of the water phase flow and analyze the 
sensitivity of the penetration length to the viscosity ratio between the grout and water, the 
maximum relative difference (MRD) of the grout penetration length between the results 
of two-phase flow and single-phase flow for different viscosity ratios and yield stresses 
are presented in Figure 12. The MRD is defined by 

MRD = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼𝑖𝑖
𝑠𝑠−𝐼𝐼𝑖𝑖

𝑡𝑡)
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

× 100%                                                                     (44) 

where 𝐼𝐼𝑖𝑖𝑠𝑠and 𝐼𝐼𝑖𝑖𝑡𝑡 is the grout penetration length for two-phase flow and single-phase flow, 
respectively, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum penetration length determined by the yield stress, 
pressure and aperture. The larger values of the MRD imply higher importance of the water 
phase flow. 

At a given grouting time, the normalized MRD  of the penetration length between 
numerical and analytical results decreases from ~25% to less than 2% when the viscosity 
ratio between the grout and groundwater increases from 2.5 to 100. This result 
quantitatively demonstrates the impacts of the two-phase flow effects, which significantly 
depends on the viscosity ratio between the grout and groundwater. The typical viscosity 
ratio in rock grouting practice is around 20 (i.e., the grout viscosity is around 0.02 Pa·s), 
and the effect of two-phase flow is still significant. Using models that ignore the water 
phase flow will overestimate the penetration length, especially at an early stage of 
grouting. 

The MRD is insensitive to the yield stress of the grout, indicating that the impact of the 
water phase flow is independent of the grout yield stress. However, the yield stress will 
affect the absolute differences between the two-phase flow and single-phase flow, since 
the yield stress determines the maximum penetration length of the grout. 

4.5 Impact of water flow under grout hardening 

Due to physical and chemical processes, the cement grout properties (e.g., viscosity and 
yield stress) increase with time, known as the hardening process. Both linear functions 
and exponential functions have been used to model the hardening process for 
cement/bentonite grouts by Håkansson (1987; 1993) and Hässler (1991). In this study, an 
exponential function is also adopted to describe the time-dependent viscosity and yield 
stress, written as, 

𝜇𝜇𝑔𝑔(𝑡𝑡) = 𝜇𝜇𝐼𝐼𝑒𝑒𝑎𝑎𝑎𝑎                                                                  (45) 

𝜏𝜏0(𝑡𝑡) = 𝜏𝜏𝐼𝐼𝑒𝑒𝑏𝑏𝑏𝑏                                                                   (46) 
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where 𝜇𝜇𝐼𝐼 and 𝜏𝜏𝐼𝐼 is the initial viscosity and yield stress, a and b is a parameter controlling 
the increase rate (i.e. hardening rate) of viscosity and yield stress of the grout, 
respectively.  

In this study, the initial viscosity 𝜇𝜇𝐼𝐼 = 0.01Pa ∙ s and the initial yield stress 𝜏𝜏𝐼𝐼 = 2Pa are 
adopted for the simulation. To illustrate the sensitivity on the hardening rate, three sets of 
parameter a and b, representing low (a = 0.00025 and b = 0.0002), median (a = 0.0005 
and b = 0.0004) and high (a = 0.00075 and b = 0.0006) hardening rate are simulated.  By 
considering the three cases of the hardening process, the penetration lengths for the two-
phase flow and the single grout flow are calculated to demonstrate the significance of 
water flow, presented in Figure 13.  

 

Figure 13 The penetration lengths for the two-phase flow and the single-phase flow under 
different conditions of grout hardening rate. 

Under the condition of grout hardening, the penetration lengths for the two-phase flow 
and the single-phase flow exhibit more significant differences compared to that without 
considering the hardening process (see Figure 13). The results of single-phase flow by 
ignoring the water flow generally overestimate the penetration length not only for the 
early stage but also for the entire grouting process until it stops. This is caused by the 
time-dependent viscosity and yield stress of the grout that enhances the differences 
between the two cases (i.e. the two-phase flow and the single-phase flow) with grouting 
time. This result indicates that the water flow has a more significant impact under the 
realistic conditions that includes the grout hardening process. In addition, the hardening 
process significantly affects the penetration length for relatively longer grouting time 
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before the grout stops, due to the increase of viscosity and yield stress. The maximum 
penetration lengths reduce with the increasing hardening rate.  
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5. NON-NEWTONIAN GROUT PROPAGATION IN 2D 
FRACTURE NETWORKS 

In this Chapter, we present validation results for the extended two-phase flow model for 
cement grouts propagation in 2D fracture networks. Using the validated model, we 
studied the impact of fracture structure, hydraulic variability and rheological properties 
on grout propagation process. More details can be found in Zou et al (2019a; 2019b; 
2020). 

5.1 Mathematical model and solution method 

To extend the two-phase flow model to the DFN system, the Reynolds equation (1) needs 
to be integrated over the network based on the connectivity between each single fracture, 
expressed as 

  ∫ ∂
∂x
𝑇𝑇(𝐶𝐶) ∂P

∂x
𝑑𝑑𝑑𝑑 = ∑𝑇𝑇(𝐶𝐶) ∂P

∂x
= 0                                                        (47) 

which represents mass balance over the DFN system. Together with equations (37) and 
(38) for calculating the velocity and phase transport equation in each single fracture, 
Equation (47) defines the basic mathematical model for two-phase flow in a DFN system. 
The mathematical model for two-phase flow in a DFN system is based on the theory for 
the same in a single fracture. The main differences and difficulties encountered when 
extending the two-phase flow model from a single fracture to fracture networks are 
dealing with the integration of the mass balance equation (47) and solving the phase 
transport equation (38), for each discrete fractures in the network.  

Due to the nonlinearity of the mathematical model and complexity of the DFN structure, 
equations (47) can only be solved numerically through iteration at each time step. 
Equation (47) is equivalent to applying a finite volume method to solve equation (36) 
over each single fracture, which represents the local mass balances at each fracture 
segment formed by the lines between each two adjacent intersection nodes in a fracture. 

We introduce a moving node in each fracture to track the propagation of propagation 
interface. For any node i including the moving nodes in the entire network, equation (47) 
can be discretized as  

∑ [𝑇𝑇(𝐶𝐶)]𝑖𝑖𝑖𝑖
𝑃𝑃𝑗𝑗−𝑃𝑃𝑖𝑖
𝐿𝐿𝑖𝑖𝑖𝑖

𝑀𝑀
𝑗𝑗=1 = 0                                                                      (48) 

where M is the number of neighboring nodes, and 𝐿𝐿𝑖𝑖𝑖𝑖 is the length between the nodes i 
and j. Assembling the discretized equation (48) over all fractures (referred to volumes or 
cells in the finite volume method) yields a system of nonlinear equations, which can be 
solved by using iteration methods. The Lagrangian interface tracking method is used to 
track the grout propagation fronts (see equation 42).  
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The detailed algorithm of the solution for the two-phase flow of grout propagation in 
saturated fracture networks is summarized as follows: 

a) Define the rheological parameters of the grout (yield stress, 𝜏𝜏0 , and plastic 
viscosity, 𝜇𝜇𝑔𝑔), the controlling parameters (injection pressure, P and the maximum 
injection time, tmax), the DFN structure and the hydraulic information (fracture 
apertures, 𝑏𝑏). 

b) Initialize the phase function C and the pressure field 𝑃𝑃0, for t = 0. 

c) Determine the transmissivity  𝑇𝑇(𝐶𝐶)  for each fractures according to the phase 
function and the pressure field, based on equations (39-41). 

d) Compute the new pressure field 𝑃𝑃1 by solving equation (48). 

e) Compare the new pressure field 𝑃𝑃1  with the previous pressure field 𝑃𝑃0 : if the 
difference meets the convergence condition𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑃𝑃1 − 𝑃𝑃0|) < 𝜀𝜀 , where 𝜀𝜀  is a 
small number representing the error tolerance, then go to f); otherwise, let 𝑃𝑃0 =
𝑃𝑃1 and go back to c).  

f) Compute the velocity u according to equation (37) and determine the time step ∆t 
according to equations (43). 

g) Update the location of the interface through point tracking based on equation (42) 
and t = t + ∆t. 

h)  Stop criteria: if t < tmax, go back to c); otherwise, finish and stop.  

5.2 Verification by experimental data 

To verify the two-phase flow model and the proposed computing algorithm for a fracture 
network, simulation results are compared with experimental data obtained in a laboratory 
test system (Figure 14) (Håkansson 1987). The experiment of Håkansson (1987) is 
considered as a benchmark in the literature (e.g. Hässler 1991; Eriksson et al. 2000; 
Mohajerani et al. 2017) mainly because they were conducted on a relatively large scale 
relevant for fractured rock applications.  

This test system consists of two parallel plates of plexiglass with the size of 1.2 × 1 × 
0.015 m. The two sides along the length of the plates were sealed and the remaining two 
sides along the width of the plates were fixed by given water heads. One hundred and 
twenty rectangular plexiglass plates were homogeneously placed between the two plates 
to construct the regular fracture network. The fracture aperture is 1 mm and the width of 
the fractures is 5 mm. At the center of the top plate, a circular hole was drilled for injecting 
a non-Newtonian fluid. 
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Figure 14 Schematic illustration of the laboratory test system. 

In this experiment, all fractures were initially filled with water. The injected non-
Newtonian fluid was a bentonite grout, characterized by a rheometer and fitted to the 
Bingham model. The curve fitted yield stress was 3 Pa and the viscosity was 0.035 Pa ∙ s; 
the injected fluid had time constant rheological properties. The injection pressure forcing 
the fluid displacement was 4.8 kPa and the entire propagation process was filmed by a 
camera placed orthogonally above the transparent experimental plate. The video of the 
test, which contains the entire dataset of the propagation time and positions, is presented 
in the Supplement Material.  Specific snapshots from this experiment have been 
considered in the literature (e.g. Hässler 1991; Eriksson et al. 2000; Mohajerani et al. 
2017), however the full and continuous experimental dataset is presented for the first time 
in this study.  
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Figure 15 Comparison of propagation patterns between experiments and simulations at t 
= 3s, 6s, 20s and 65s. 

Figure 15 shows comparison of injected fluid propagation in the fracture network for 
different times, i.e. t = 3s, 6s, 20s and 65s, between experimental results and numerical 
simulations. Only the top half of the fracture networks are shown due to symmetry. With 
increasing time, the injected fluid gradually displaces the water in the fracture network. 
Simulated result matches very well with the experimental data for all the times. This 
indicates that the two-phase flow model developed in this study is sufficiently accurate 
and can be used for modeling two-phase flow of yield-power-law fluids propagation in 
an advection-dominated, water-saturated fracture network. Compared with the results 
presented in previous studies (e.g., Hässler 1991; Eriksson et al. 2000; Mohajerani et al. 
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2017), simulation results presented in this study (Figure 15) better match the experimental 
data, indicating that the mathematical model and solution method are more accurate.  

To quantitatively compare and follow the evolution of the propagation process, a 
parameter representing the volume fraction between the penetrated volume and the total 
volume of the fractures is defined. Specifically, a penetration volume fraction is  

𝛤𝛤 = 𝑉𝑉𝑝𝑝
𝑉𝑉𝑐𝑐

                                                                                 (49) 

where 𝑉𝑉𝑝𝑝 is the penetrated volume and 𝑉𝑉𝑐𝑐 is the total volume of the fractures. 

Figure 16 shows the evolution of the penetration volume fraction 𝛤𝛤 from the numerical 
simulation result. The experimental result is also presented for comparison, which 
matches well with the simulation result. The penetration volume fraction 𝛤𝛤  increases 
rapidly  in the initial phase and gradually slows down with increasing time, especially 
after 120s when the injected fluid arrives at the sealed walls; this is caused by the 
gradually reduction of the pressure gradient in the fractures and the yield stress of the 
injected fluid.  

 

Figure 16 Comparison of penetration volume fraction between the simulation results and 
experimental data. 
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5.3 Fracture network generation and simulation setting 

In this study, randomly generated 2D DFN models based on cumulative density functions 
of location, orientation and size of fractures, are used to illustrate two-phase cement 
grouts propagation in rock fracture networks. A similar approach for generating 2D DFN 
models can be found in the literature (e.g., Baghbanan and Jing 2007). In this study, the 
cumulative density functions and associated parameters used for generating the DFN 
model are based on site investigation data inferred from Forsmark (Sweden), a potential 
site for Swedish radioactive nuclear waste disposal. The parameters, distributions and 
values used to generate the DFN for this study are summarized in Table 3.  

Table 3 Distributions and parameters used to generate the DFN model. 

Domain size 10m×10m 

Fracture sets 5 

Density 1.2 

Location  Uniform distribution  

Orientation Fisher distribution 

Trend/plunge: 292/2, 326/2, 60/6, 15/2 and 5/86  

Fisher constants: 17.8, 14.3 12.9, 14.0 and 15.2 

Lengths Fractal 

(minimum 1 m, maximum 564 m, fractal dimension 1.2) 

Width 0.5 m  

Aperture Truncated lognormal distribution 

(minimum 1 𝜇𝜇𝜇𝜇 , maximum 200 𝜇𝜇𝜇𝜇 , mean 𝑏𝑏� =  100  𝜇𝜇𝜇𝜇 , 
standard  deviation 𝜎𝜎 = 0, 𝑎𝑎𝑎𝑎𝑎𝑎 1) 

 

To quantify the impact of the network structure, 50 DFN realizations are generated using 
the same values of the distribution parameters. The number of realizations is chosen by a 
convergence analysis of the propagation results, to ensure that the number of realizations 
is sufficient for obtaining stable results. Figure 17 exemplifies one generated DFN, 
illustrating the complex fracture networks. 
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Figure 17 A random generated DFN realization by using the distributions and parameters 
provided in Table 3. 

It is well known that the fracture hydraulic apertures are highly heterogeneous and may 
vary significantly between fractures, which often follows the truncated power-law 
distribution (Renshaw and Park 1997) or the truncated lognormal distribution (Dverstop 
and Andersson 1989; Pyrak-Nolte et al. 1997). The truncations are due to the limitation 
of measurement for small apertures. In addition, the fracture aperture might be correlated 
to the fracture length, where the longer fractures exhibit larger apertures (Renshaw and 
Park 1997; Baghbanan and Jing 2007). Aperture distributions and correlation to lengths 
were partially confirmed by laboratory or field measurements of single fractures, borehole 
cores and outcrops (Wang et al. 1988; Renshaw and Park 1997). The distribution of 
fracture aperture constitutes the main hydraulic variability of the fracture networks in the 
grouting processes. In order to illustrate the impact of such hydraulic variability on the 
propagation of cement grouts, two cases of heterogeneous aperture will be considered, 
one using a truncated lognormal distribution uncorrelated to fracture length, and one 
perfectly correlated to the fracture length.  

The truncated lognormal distribution for the fracture aperture has four parameters, 
including the lower and upper aperture limits, i.e. 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 , and the mean and 
standard deviation of the aperture natural logarithm, i.e. 𝑏𝑏 ��� and 𝜎𝜎. The variability of the 
lognormal distribution is controlled by the parameter 𝜎𝜎. Two sets of 50 DFN models, one 
with a constant aperture 𝜎𝜎 = 0  and the other with heterogeneous aperture 𝜎𝜎 = 1  are 
simulated in this study.  
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For comparison and to highlight the impact of irregular network structure, the case for a 
structured orthogonal network similar to Hässler (1991) and Hässler et al (1992) with the 
same size (100 𝑚𝑚2) and the same mean intensity (with 15 orthogonal fractures along 
horizontal and vertical directions, respectively) as the 50 random DFN models is 
simulated. To isolate the impact of network structure, the same constant fracture aperture 
b = 100 µm is adopted in the simulation for this structured network. 

Initially, the fracture networks are saturated with groundwater. The grout assumed as a 
Bingham fluid is injected with a constant pressure (P = 1 MPa) at the center of the network 
(see Figure 17); note that a deterministic fracture is added at the center to keep the same 
injection boundary condition for all realizations. The outlet boundary condition is P = 0 
Pa, for this generic study (see Figure 17). In practice, the outlet boundary condition is 
determined by the in situ static water pressure in the grouting area. The physical 
parameters of the Bingham model adopted for all simulations are selected according to 
typical cement grouts used in practice (Håkansson 1993; Stille 2015). Specifically, the 
yield stress is 2.5 Pa and the plastic viscosity is 0.025 Pa ∙ s . For groundwater, the 
viscosity is 0.001 Pa ∙ s. All realizations are conducted by using the algorithm presented 
in Section 2.2, on a desktop computer. Each realization for the maximum injection time t 
= 1800 s takes around 20 minutes. 

5.4 Grout propagation in 2D fracture networks 

Figure 18 shows an example of grout propagation patterns in a DFN system at different 
times, i.e. t = 450 s, 900 s, 1350 s and 1800 s. In this example, the aperture is constant (b 
= 100 µm). The grout (marked by red) generally spreads along the connected fractures 
(marked by blue) after injection. With the injection time increasing from 450 s to 1800 s, 
the grout gradually fills the connected fractures. However, the rate of filling is different 
in each fracture. Most well-connected fractures are filled relatively rapidly whereas a few 
fractures are less penetrated, depending on local pressure gradient affected by the network 
geometry conditions.   
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Figure 18 Overview of grout propagation patterns in a DFN with constant aperture b = 
100 𝜇𝜇𝜇𝜇 at different times (a) t = 450 s; (b) t = 900s; (c) t = 1350 s and (d) t = 1800 s. 

Figure 19 presents the pressure field evolution in the exemplified DFN system at different 
times, i.e. t = 450 s, 900 s, 1350 s and 1800 s. Generally, the pressure reduces radially 
around the injection borehole located at the center of the DFN. With the injection time 
increasing from 450 s to 1800 s, the pressure at the interface (i.e. grout penetration front, 
see Figure 19) gradually decreases. The pressure values in the cement grout are much 
larger than that in the water phase, indicating that the pressure drop in the DFN system is 
mainly caused by the cement grout flow. 
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Figure 19 Overview of the pressure field evolution in a DFN with constant aperture b = 
100 𝜇𝜇𝜇𝜇 at different times (a) t = 450 s; (b) t = 900s; (c) t = 1350 s and (d) t = 1800 s. 

 

5.5 Impact of network structure and hydraulic variability 

To illustrate the impact of network structure and hydraulic variability, the mean of 𝛤𝛤 
curves of the 50 realizations are analyzed.  
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Figure 20 Mean penetration volume fraction Γ curves for different conditions of fracture 
networks and apertures. 

Figure 20 presents the mean Γ curves for different conditions of the fracture network and 
apertures. Generally, the mean Γ for all cases increases by different rates with time. The 
simplest reference case is the structured orthogonal network with constant aperture 
(i.e. σ = 0), where the mean Γ achieves 0.69 at t = 1800 s (see the blue curve in Figure 
20). For the DFN case with the same constant aperture, the mean Γ increases relatively 
slower and it attains 0.5 at t = 1800 s (see the red curve in Figure 20). Compared to the 
reference case of a structured orthogonal network with homogeneous aperture, the mean 
Γ reduces to around 27.5% at t = 1800 s. This implies that the network structure is 
significant by delaying the grout propagation process. 

When the DFN features uncorrelated heterogeneous apertures following the truncated 
lognormal distribution, 𝜎𝜎 = 1 (see the black curve in Figure 20), the increase of mean Γ 
becomes slower and its value is around 0.37 at t = 1800 s. It reduces 26% compared to 
the case when the aperture is constant, indicating that the uncorrelated heterogeneous 
aperture and hydraulic variability also significantly affects the grout propagation process 
by delaying the propagation. For the case with heterogeneous apertures correlated to the 
fracture length (see the magenta curve in Figure 20), the mean Γ increases much faster 
than the other DFN cases during the entire  stage of injection, especially compared to the 
case with uncorrelated heterogeneous apertures. The value of mean Γ is around 0.59, 
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which is around 60% higher than the uncorrelated case and 18% higher than the case with 
constant aperture. Such important differences indicate that the correlations between 
aperture and fracture size may significantly affect the grout propagation processes. The 
main reason is that the longer fractures have higher transmissivity and better connectivity 
for the correlated case, which largely enhances the propagation rate. In practice, cement 
grouting is expected to be more efficient in fracture networks when the aperture is 
correlated to its size.   

5.6 Impact of rheological properties 

In order to demonstrate the impact of rheological properties on non-Newtonian grouts 
propagation in fracture networks, two sets of simulations by varying the yield stress and 
plastic viscosity are conducted, respectively, using a same random generated network 
structure. 

Figure 21 presents the penetration volume fraction Γ curves for different values of yield 
stress. Generally, the Γ for all cases increases at different rates with time. The propagation 
rate gradually reduces when the yield stress increases from 0.5 Pa to 5 Pa.  The Γ for the 
case when yield stress is 0.5 Pa is around 0.55 at t = 1800 s (see the black curve in Figure 
21). It reduces around 10% and 13 % for the case when the yield stress is 2.5 Pa and 5 
Pa, respectively. This result implies that the yield stress has limited impact on the grout 
propagation rates in fracture networks, e.g., at 1800 s, the differences of penetration 
volume fraction is less than 10 % between the cases when yield stress is 0.5 Pa and 5 Pa. 

 

Figure 21. Penetration volume fraction Γ curves for different values of yield stress. The 
plastic viscosity is 0.025 Pa·s.  
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Figure 22. Penetration volume fraction Γ curves for different values of plastic viscosity. 
The yield stress is 2.5 Pa. 

Figure 22 shows the penetration volume fraction Γ curves for different values of plastic 
viscosity. When the plastic viscosity is relatively small, i.e., 0.005 Pa·s, the grout 
propagates fast and the Γ approaches 0.64 at t = 1800 s. The propagation rate reduces 
dramatically with the increase of plastic viscosity from 0.005 Pa·s to 0.05 Pa·s. This result 
indicates that the plastic viscosity of cement grout significantly influences the 
propagation processes in fracture networks.  
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6. CONCLUSIONS  

The most important conclusions from this project are summarized as follows: 

• For 2D radial flow of a Bingham fluid, the solution presented in this report and 
the solution by Dai and Bird (1981) are based on different assumptions, that is, 
Dai and Bird (1981) considered the vertical velocity component in the continuity 
equation, and we assumed that vertical velocity is negligible. This difference leads 
to two different approximation models for rock grouting analysis, i.e., one is 
presented in this report and the other one is derived by Gustafson and Claesson 
(2005). 

• The shape of the plug flow region varies in the two different approximation 
models, that is, the plug flow region in the model presented in this report is 
independent of the radius; in the model presented in Dai and Bird (1981) and 
Gustafson and Claesson (2005), the plug flow region increases with the radius. 
The reason for the obtained different shapes of plug flow region in the two 
approximation models is due to the application of different boundary conditions 
for the shear stress. We use the boundary condition on the surface of the plug flow 
region, while the other model sets shear stress equal to zero in the middle of the 
fracture aperture in the plug flow region.  Since the two models are zero-order 
approximation of the realistic kinematical effects and the Bingham model is an 
idealized rheological model, the real shape of the plug flow region for realistic 
fluids/grouts remains unknown at this point. 

• Using the solution with radius-independent plug flow region presented in this 
report, the grout penetration length, injected volume and flowrate evolution with 
respect to the grouting time under constant effective grouting pressure are derived. 
The closed-form solution of flowrate evolution as a function of grouting time is 
presented in this study for the first time. These evolution functions provide 
fundamental theory for rock grouting design and monitoring. 

• The differences in the results of grout penetration length and flowrate evolution 
with respect to the grouting time between the two solutions are negligible within 
the full range of grouting time.  

• The fracture surface roughness significantly affects the local flow behavior for 
Bingham grout flow in rough-walled rock fractures. The local velocity profiles, 
as shown in Figure6, cannot be well predicted by the analytical solution based on 
an idealized smoothed parallel plate model. 

• When the Reynolds number is relatively small, i.e., Re ≤ 10, the surface 
roughness has limited impact on the overall flow behavior since the flow is 
controlled by the yield stress for Re ≤ 10. When the Reynold number is relatively 
large, i.e., Re > 10, the equivalent transmissivity for the rough-walled fracture 
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reduces with increasing Re. Using the analytical solution will overestimate the 
realistic transmissivity when Re > 10. 

• The water flow significantly affects the pressure distribution in the fracture and 
delays grout penetration. The impact of the water phase flow is independent of the 
grout yield stress, but significantly depends on the viscosity ratio between the 
grout and groundwater, more so for the cases with smaller viscosity ratios.  

• The grout hardening process enhances the significance of water flow for the entire 
grouting time. It is more important to consider the two-phase flow process in 
modeling of grout penetration under the condition of grout hardening. The 
penetration length reduces with an increasing hardening rate. 

• Analytical solutions or numerical models for rock grouting that ignore water 
phase flow, e.g., RTGC method, may only be applicable for cases where the grout 
viscosity is much higher than that of groundwater and the density is close to that 
of groundwater. Neglecting groundwater in grout flow modeling overestimates 
the penetration length, i.e. the errors can be over 20% of the maximum penetration 
length for the cases with low viscosity ratios.  

• The two-phase flow model for a single fracture can be extended for modeling of 
cement grouts as Bingham fluids propagation in 2D water saturated, randomized 
DFN. The network structure significantly affects grout propagation in fracture 
networks by delaying the propagation processes. Compared to the structured 
orthogonal network, the network structure of randomized DFN reduces 27.5% of 
the penetration volume fraction on average at t = 1800 s, with increased 
uncertainty with time. 

• Features of hydraulic variability, i.e., distribution of apertures, significantly 
influence the penetration volume fraction of cement grouts. Compared to the case 
with constant aperture, the penetration volume fraction at t = 1800 s reduces 26% 
in the case with uncorrelated heterogeneous aperture. The feature of uncorrelated 
heterogeneous aperture also significantly increases the variability range and 
standard derivation of the penetration volume fraction.       

• Correlation of aperture to the fracture length is another feature of hydraulic 
variability that significantly affects the propagation processes. The length-
correlated heterogeneous aperture largely increases the propagation rate and 
reduces variability range compared to the uncorrelated case.  

• The rheological properties of the cement grout, i.e., yield stress and plastic 
viscosity, significantly affect the propagation process of cement grout in discrete 
fracture networks. The propagation rate gradually reduces when the yield stress 
increases from 0.5 Pa to 5 Pa.  The penetration volume fraction at t = 1800 s 
reduces around 10% and 13 % when yield stress increase from 0.5 Pa to 5 Pa. The 
propagation rate reduces dramatically with the increase of plastic viscosity. When 
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the plastic viscosity increases from 0.005 Pa·s to 0.025 Pa·s, the penetration 
volume fraction at t = 1800 s reduces 23%, and it further reduces 20% when the 
plastic viscosity increases from 0.025 Pa·s to 0.05 Pa·s.  
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7. SUGGESTIONS FOR ENGINEERING PRACTICE 

To fulfill the general objective of this project that is to improve predictions, design and 
execution of rock fissure grouting, we conducted a series of theoretical and numerical 
studies on the cement grout propagation in single fractures and fracture networks. Those 
theoretical and numerical studies are important bases for improving best practice 
regarding predictions, design and execution of rock grouting, even though we have not 
start to work with field data in this project. According to the conclusions drawn from our 
theoretical and numerical studies, the following suggestions for engineering practice are 
summarized below: 

• From a practical point of view, the differences in prediction results between the 
two solutions are negligible, so that both solutions can be used for rock grouting 
analysis in practice. However, the expression of the solution with radius-
independent plug flow region presented in this report is much simpler than the 
solution by Gustafson and Claesson (2005). Therefore, it is recommend using the 
solution including the evolution of injected grout volume presented in this report 
for prediction, design and execution of rock grouting in practice for simplicity. 

• At present, the fracture surface roughness has not been directly considered in 
current analytical models used in practice, e.g., RTGC method. Meanwhile, 
parameterization of fracture surface roughness remains a challenge since it is 
difficult to access the fracture surface roughness data in the field. Nevertheless, 
for rock grouting design, ignoring the impact of fracture surface roughness may 
overestimate the penetration length, especially at the initial stage of injection 
where the Reynolds number is high. Meanwhile, in practice, proper 
characterization of the aperture variability by hydraulic tests is very important for 
accurately prediction of grout propagation in fractured rocks. 

• The groundwater flow driven by the injected grouts in the rock grouting process 
is ignored in most analytical models used in practice, e.g., RTGC method. Since 
the water phase flow significantly affects the pressure distribution in the fracture 
and delays grout propagation, we recommend considering the water flow process 
and using the two-phase flow in the design of rock grouting, especially when the 
grout viscosity is relatively small that close to the water viscosity. 

• The extended DFN model provides an efficient numerical tool for quantifying 
rock grouting in fractured rocks. Compared to current analytical models based on 
the assumption of idealized single fractures, the DFN models accounts for the 
more realistic geological conditions of the fractured rocks. Therefore, we 
recommend further developing and using DFN models to conduct real-time 
prediction and controlling in practice. 

• We have shown that the rheological properties of the cement grout significantly 
affect the propagation rate. In practice, accurate measurement for rheological 
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properties of the cement grout is required for more accurately prediction of grout 
propagation in fractured rock. We recommend using real-time measured 
rheological properties for predictions, design and execution of rock grouting in 
practice. 
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8. FUTURE STUDY 

Although the results obtained in this project led to some important findings in theoretical 
and numerical modeling of rock grouting, many open questions and challenging issues 
remain due to both complex geometric conditions of natural rock fractures and complex 
rheological properties of grouts. The following studies are recommended for the future: 

• We only illustrated the general impact of rheological parameters on the grout 
propagation in rock fractures. The physical and chemical properties of grout 
materials and additives and their impacts on rheological properties, e.g., time-
dependent yield stresses and viscosities, are required to be further studied for 
specific grouts (with or without specific additives) in order to improve the 
accuracy for predictions, design and execution of rock grouting in practice (e.g., 
Zhang et al, 2017; Zhang  et al, 2018; Jin et al, 2019; Bahman et al, 2019).   

• Currently, we mostly focused on the grout propagation process without 
consideration of the hydro-mechanical coupling effects. In fact, the injected grout 
may cause elastic or elastic-plastic jacking or dilation of the fractures, which 
would consequently affect the propagation process (e.g., Rafi and Stille 2014; Zou 
et al. 2018). To date, the impact of jacking is only demonstrated in idealized 
configurations, i.e., smoothed parallel plate models. Such hydro-mechanical 
coupling effect under more realistic conditions is an important topic that needs to 
be further studied in the future. 

• Our two-phase flow model has been validated by the benchmark experimental 
data (Håkansson 1987). Further development and validation of theoretical and 
numerical models requires both reliable laboratory experimental data and high-
quality field test data. Therefore, experimental tests with consideration of more 
realistic conditions, e.g., surface roughness and realistic stress conditions, are 
important topics for the future study (e.g., Ghafar et al 2017).   

• We only simulated grouts propagation in 2D fracture networks. In reality, rock 
fractures are all distributed in 3D space. Therefore, it is important to further extend 
the two-phase model into 3D for modeling of grouts propagation in 3D fractured 
rocks in the future. 
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9. A SHORT NOTE FOR DESIGNERS 

In this report, we analyzed the two solutions for radial flow of Bingham fluid (grout) 
between parallel disks, which is the basic theory for the RTGC method for design of rock 
grouting. According to the analysis results, the following notes are suggested for rock 
grouting designers: 

• We recommend using the solution including the evolution of injected grout 
volume presented in this report for design of rock grouting in practice for 
simplicity.  

• In application of RTGC method for design of rock grouting, for the 2D radial flow 
case, by given the following parameters: 

Hydraulic aperture 2B; 

Grouting pressure 𝑃𝑃𝑔𝑔; 

Groundwater pressure 𝑃𝑃𝑤𝑤; 

Borehole radius 𝑟𝑟0; 

Plastic viscosity of the grout 𝜇𝜇; 

Yield stress of the grout 𝜏𝜏0; 

The maximum penetration length 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 can be obtained by 

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐵𝐵(𝑃𝑃𝑔𝑔 − 𝑃𝑃𝑤𝑤)

𝜏𝜏0
 

The relative propagation length 𝐼𝐼𝐷𝐷 is defined as 

𝐼𝐼𝐷𝐷 =
𝐼𝐼

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
=
𝜏𝜏0(𝑟𝑟𝑔𝑔 − 𝑟𝑟0)
𝐵𝐵(𝑃𝑃𝑔𝑔 − 𝑃𝑃𝑤𝑤)

=
𝑧𝑧𝑝𝑝
𝐵𝐵

 

The relative propagation length 𝐼𝐼𝐷𝐷 can be calculated by numerical integration of 
the equation: 

𝑑𝑑𝑡𝑡𝐷𝐷
𝑑𝑑𝐼𝐼𝐷𝐷

=  
(𝐼𝐼𝐷𝐷 + 1 𝛾𝛾⁄ )ln (𝐼𝐼𝐷𝐷𝛾𝛾 + 1)

(2 − 3 𝐼𝐼𝐷𝐷 +  𝐼𝐼𝐷𝐷3)
 

where  𝑡𝑡𝐷𝐷 is a dimensionless time defined as 

 𝑡𝑡𝐷𝐷 = 𝑡𝑡/𝑡𝑡0 = 𝑡𝑡𝜏𝜏02

6𝜇𝜇(𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤)
,   𝑡𝑡0 = 6𝜇𝜇(𝑃𝑃𝑔𝑔−𝑃𝑃𝑤𝑤)

𝜏𝜏02
 

and 𝛾𝛾 is a parameter defined as 
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𝛾𝛾 =
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟0

=
𝐵𝐵(𝑃𝑃𝑔𝑔 − 𝑃𝑃𝑤𝑤)

𝑟𝑟0𝜏𝜏0
 

The evolution of grouting flowrate 𝑄𝑄𝑔𝑔 can be determined by 

𝑄𝑄𝑔𝑔 = 2𝐼𝐼𝐷𝐷+2/𝛾𝛾
1+2/𝛾𝛾

∙ (2−3 𝐼𝐼𝐷𝐷+ 𝐼𝐼𝐷𝐷3)
(𝐼𝐼𝐷𝐷+1 𝛾𝛾⁄ )𝑙𝑙𝑙𝑙 (𝐼𝐼𝐷𝐷𝛾𝛾+1)

∙ 𝑉𝑉𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡0
         

where 𝑉𝑉𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum injection volume can be calculated by 

𝑉𝑉𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚  = 2𝜋𝜋𝜋𝜋𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚2(1 + 2/𝛾𝛾)       

The evolution of grouting flowrate 𝑄𝑄𝑔𝑔 can be used in the determination of stop 
time for the injection once a limited flowrate value is accepted as the stop criteria.  

• When the grout viscosity is below 25 mPa, it is suggested applying the two-phase 
flow model to consider the groundwater flow (displaced by injected grouts) during 
the grouting process; otherwise, it may overestimate the penetration length more 
than 20 % in the 1D channel flow case. 

• The analytical solutions based on a single fracture can be used for parameter 
scoping in the design. However, it is better to apply discrete fracture networks 
modeling results for the design of rock grouting since complex fracture networks 
rather than single fractures exist in natural rock masses in reality. 

• Rock characterization by hydraulic tests and grout properties characterization in 
real-time are important for prediction of rock grouting since fracture network 
structures, hydraulic aperture variability and grout properties are all important 
design parameters that can affect grout propagation rate. The more accurate of 
these parameters will help to minimize the potential uncertainty in modeling of 
rock grouting for the design.  
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