

TRUST 4.2 Integrated use and interpretation of geophysical and nongeophysical data

Mathias Ronczka, Kristofer Hellman, Roger Wisen, Torleif Dahlin

10V3 CENTER FOR UNIVERSITY STUDIES, RESEARCH AND DEVELOPMENT

Project Overview

- Main objectives:
 - 1. Increase reliability of geophysical models
 - 2. Repeatable and objective joint interpretation of different methods
 - 3. Incorporation of non-geophysical data
 - 4. Uncertainty estimates
- What has been done:
 - 1. Focus on ERT (electrical resistivity tomography) and SRT (seismic refraction tomography)
 - 2. Structurally coupled joint inversion up and running
 - 3. Implementation of cluster analysis as post processing step
 - 4. Assessment of model reliability
 - 5. Incorporation of borehole data
 - 6. Test on different synthetic models and field test sites

BeFo Report 179

Joint inversion approach Structurally coupled inversion

- Implemented in BERT/GIMLi software package by Thomas Günther and Carsten Rücker (www.pygimli.org)
- Assumption is a correlation of model parameter structure (seismic velocities and electrical resistivities)
- Works on regular and irregular grids
- Methods:
 - ERT + SRT (+ IPT*)
- This approach can be used for combining more than 2 methods (tested for IPT)
- * Induced Polarisation Tomography

Example: Sewage tunnel pre-investigation Mälaren, Stockholm

- Tunnel below water passage between Hägersten and Ålsten
- Objective: rock quality estimation §
- Focus:
 - Depth to bedrock
 - Weakness zones
- 6 profiles with 5m sensor spacing
 - 3 N-S: 600 m long
 - 3 W-E: 300 m long
- SRT measurements during night
 - Noise minimisation

Example: Sewage tunnel pre-investigation Mälaren, Stockholm

- Bedrock depth (black circles) from geotechnical soundings
- Joint inversion performs better compared to separated inversion for bedrock depth estimation

Incorporation of non-geophysical data

- Use of borehole information as additional constraints
- Geotechnical soundings \rightarrow bedrock depth
- Approach:
 - Include borehole geometry as rectangles in mesh
 - Insert interfaces matching with geological interfaces
 - Horizontally coupled with surrounding
 - Vertically decoupled geologic units
 - If borehole resistivity logs available \rightarrow use as start value for resistivity

Visualisation of reliability Example: Äspö HRL

Coverage as a reliability estimate

- Coverage
 - Summation of all sensitivities for a model cell
 - Poorly resolved model parts also show low coverage

Approach for ERT:

- Coverage mapped to range 0 1
- Definition of 2 thresholds
 - Standard: 0.7 and 0.4
- Fade out unreliable model parts using alpha-shading

Approach for SRT:

- Areas without ray coverage left
- blank

BeFo

BeFo Rapport 179

BeFo

Cluster analysis to aid interpretation Example: Äspö HRL

Joint inversion models

BeFo Rapport 179

9000 8000 7000 10000

Cluster analysis of models

Mean Shift algorithm

Geological interpretation based on cluster analysis

