# Unified model for design of rock grouting

Swedish concept for pre-grouting of infrastructure tunnels

Magnus Zetterlund, Norconsult
Mikael Creütz, Golder Associates
Thomas Janson, Tyréns
Magnus Eriksson, Trafikverket



# Unified model for design of rock grouting

### Aim:

 Unified model/structure for design of pregrouting of infrastructure tunnels in Sweden

### Goal:

- More effective grouting process
- Set a standard that at least can be expected





# Involvement of Industry

- Webinarium
- Work-shop
- Web-survey
- Presentations for the industry
- Sub-projects open for the industry
- Web-information
- Remittance



### Work-shop

Discussion regarding grouting activites and if they should be standardized, design or contractor issue

| Activity              | Standardised | Design | Contractor |
|-----------------------|--------------|--------|------------|
| Fan geometry          |              |        |            |
| Probe holes           |              |        |            |
| Grout characteristics |              |        |            |
| Grout                 |              |        |            |
| Material for grouting |              |        |            |
| Equipment             |              |        |            |
| Performance           |              |        |            |
| Stop criteria         |              |        |            |
| Complementary holes   |              |        |            |
| Control performance   |              |        |            |
| Control sealing       |              |        |            |



# Sub-projects

- Open for bids from the Industry
- In total around ten bids with participance from academic, contractors and consultancy
- Three different sub-projects:
  - Characterisation&Design
  - Technical Specifications
  - Contract and plan for Payment



### Develop design categories (PK) based on:

Rock groups

| Rock  | Characteristics                                                                                         | Example of rock type and                                                                                                                    | Conceptual fracture system and water- |
|-------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| group |                                                                                                         | tectonics                                                                                                                                   | bearing fractures                     |
| 1     | Low to moderate conductive rock mass with flow restrictions mainly due to limited fracture connectivity | Granite with low grade of brittle tectonic impact. Gneiss with low grade of brittle tectonic impact, and high grade of ductile deformation. |                                       |
| 2     | Low to moderate conductive rock mass with flow restrictions mainly due to fracture filling/clay         | Transformed/brecciated granite.<br>Schist and amfibolites, shales or<br>foliated gneiss.                                                    |                                       |
| 3     | Moderate to high conductive rock mass with well-connected fracture system with few flow restrictions    | Shallow rock mass. Rock mass with high number of rock mass contacts and/or weakness zones without significant clay content.                 |                                       |

- Environmental demands
- Grouting difficulty



### Design categories:

#### Classification of Design category

|              | Low demands<br>>0,25 l/min,<br>100 m x depth | Fair demands<br>0,15-0,25 l/min,<br>100 m x depth | High demands<br>0,10-0,15 l/min,<br>100 m x depth | Very high demands<br><0,10 l/min,<br>100 m x depth |
|--------------|----------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| Rock group 1 | Design                                       |                                                   |                                                   |                                                    |
| Rock group 2 | category 1                                   | Design ca                                         | tegory 2                                          | Design                                             |
| Rock group 3 |                                              |                                                   |                                                   | category 3                                         |

#### Adjustment of Design category regarding grouting difficulty

#### Required sealing efficiency

Hydralic conductivity in the grouted zone Kinj [m/s]

|                                        | < 90 %              | 90-99 % | >99 %               |  |
|----------------------------------------|---------------------|---------|---------------------|--|
| >10 <sup>-7</sup> m/s                  | Ev. reduce          |         |                     |  |
| 10 <sup>-7</sup> -10 <sup>-8</sup> m/s | the Design category |         | Ev. increase        |  |
| <10 <sup>-8</sup> m/s                  |                     |         | the Design category |  |



- Design Category 1: Design shall mainly be based on experience and there are pre-determined fan-layout that can be used.
- Design Category 2: Design is partly based on experience and there are standardised examples which shall be check by designer
- Design Category 3: The design shall be done by project specific design.



The design categories are guideline for determining:

- Extent of investigations
- Level of analysis in design
- Level of monitoring and follow-up

Develop design categories (PK) based on:

- Continuously up-dated through project phases
- Base for Grouting classes in the Construction phase



# **Technical Specifications**

- Transform the design into tender, contract and building documents
- Integrated into the Swedish guidance for building and civil engineering works and building services contracts (AMA-system)



# **Technical Specifications**

### Example of subjects that are included:

- A minimum grout hole diameter
- Description of hole cleaning after drilling
- Requirements on packers
- Installation depth for packers
- Grouting sequence
- Requirements on grouting equipment
- Control of grouting characteristics

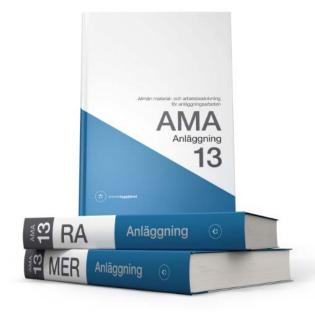


### Contract and Payment

- Performance contracts
- Fair risk distribution
- Up-date of the existing guideline regarding bill of quantities (MER-anläggning)
- Payment of time??



### Contract and Payment


### Payment of time

- On-going work
- Based on well-defined prognosis of Grouting classes
- Shall as well be a class for "unforeseen events" that is priced separately



# Implementation

- The design process is described in a "handbook"
- Standard text for technical specifications will form base for up-dating of the Swedish guidance (AMA-anläggning)
- The advices for technical specifications will form base for up-dating of the advising guidelines (RA-anläggning)
- The payment forms will form base for an up-date guideline regarding bill of quantities (MER-anläggning)



