

Risk Management in Tunneling Projects: Estimation and Planning

Respondent: Mohammad Mohammadi

Supervisors: Dr. Johan Spross, Prof. Fredrik Johansson, Prof. Stefan Larsson, Prof. Anna Kadefors

Opponent: Prof. Amund Bruland

Grading Board: Prof. Lars Rosen, Dr. Luigia Brandimarte, Dr. Chrysothemis Paraskevopoulou

Chair of Session: Dr. John Leander

OBJECTIVES OF THE PHD PROJECT

- To investigate the impact of uncertainty on **project performance**
- To develop a **model** to account for uncertainties in project **time** and **cost** estimation

CONTENTS

- Introduction
- Overview of the thesis
- The risk model
- The KTH model
- Conclusions

INTRODUCTION : TIME AND COST OVERRUN

Project	Estimated cost (billion SEK)	Actual cost (billion SEK)	Percentage increase (Overrun)
Citybanan	7.5 (1994)	20.1 (2017)	105%
Södra länken	4 (1991)	8.4 (2004)	71%
Norra länken	2.1 (1991)	10.4 (2014)	259%
Förbifart Stockholm	19 (1994)	37.7* (2030)	-

Reference: Svenska Dagbladets debattsida 24 januari 2022

*Forecast

OVERVIEW OF THE THESIS

WHAT ARE THE REASONS OF OVERRUN?

- Technical explanations
- Psychological reasons (bias)

- Economic explanation
- **Deception** Political explanation

Deliberate underestimation

Uncertainty

Error

ESTIMATION: SOURCES OF UNCERTAINTY

THE RISK MODEL

T = f(geology, design, contract, competence, machinery, economy)

C = h(geology, design, contract, competence, machinery, economy)

THE RISK MODEL IN TUNNELING PHASES

THE KTH MODEL: THEORETICAL FRAMEWORK

Probabilistic time and cost estimation:

•
$$T = T_{\rm N} + T_{\rm E} = \sum_{u=1}^{n_{\rm zone}} \int_{L_u} g_u[\mathbf{x}(l)] dl + \sum_{i=1}^{n_{\rm dis}} T_{{\rm E},i}$$

Isaksson and Stille (Rock Mech Rock Eng, 38:373–398, 2005)

•
$$C = C_{\mathrm{N}} + C_{\mathrm{E}} = \sum_{u=1}^{n_{\mathrm{zone}}} \sum_{\alpha=1}^{n_{\alpha}} \int_{L_{u}} z_{\alpha} g_{\alpha}[\mathbf{x}(l)] dl + \sum_{i=1}^{n_{\mathrm{dis}}} C_{\mathrm{E},i}$$

 $T_{\rm N}$ = Normal time, $T_{\rm E}$ = Exceptional time

 \mathbf{x} = Geological parameters that affect tunneling time and cost

 n_{zone} : Number of geotechnical (geological) zones along tunnel route n_{dis} : Number of types of disruptive events

Obtaining $g_u[\mathbf{x}(l)]$ is very challenging in practical application

THE KTH MODEL: PRACTICAL

Production effort (*Q*): Time per unit length.

 $Q = g_u[\mathbf{X}(l)]$

$Q = \sum_{a=1}^{n_a} Q_a$	Production effort
$Q_a = \sum_{k=1}^{n_k} p_{a,k} Q_{a,k}$	Production effort of the a^{th} production activity
$Q_{a,k} = \sum_{j=1}^{n_q^a} q_{j,a}$	Production effort of the a^{th} production activity in its k^{th} class

Paper B

THE KTH MODEL: PRACTICAL APPLICATION

$$\mathbf{Q} = [Q_1, Q_l, \dots, Q_L]$$
$$T'_{\mathrm{N}} = \sum_{l=1}^{L} Q_l$$

Normal
Time

$$(T'_{N})$$

$$\begin{cases}
T'_{N} \rightarrow \mathcal{N}(\mu_{T',N}, \sigma_{T',N}) \\
\mu_{T',N} = L\mu_{Q} \\
\sigma_{T',N} = \Gamma L \sigma_{Q} \\
L = \text{Tunnel length (m)} \\
\delta = \text{Scale of fluctuation} \\
L \gg \delta
\end{cases}$$

THE KTH MODEL: ACTIVITY DURATION

The tails represent **minor machinery delays** (mmd) and **minor performance delays** (mpd)

THE KTH MODEL: MINOR DELAYS

9500 10000

Paper D

 $T_{\rm N}$ (tm)

 $T_{\rm N}$ (pm)

THE KTH MODEL: GEOLOGICAL UNCERTAINTIES

- Using **proportions** of various **ground classes** instead of ground class profiles.
- Modeling geological uncertainty through **user-identified geological setting** of the area (paper B)
- Using Metropolis-Hastings (MH) algorithm within the framework of Markov Chain Monte Carlo

(MCMC) simulation for modelling geological uncertainties: Pap

Enabling time estimation for shorter tunnels ($L \geq \delta$)

✓ Round-by-round simulation of tunneling process

THE KTH MODEL

OVERRUN

In this context, the primary concern becomes the decisionmaking regarding **risk tolerance** or aversion by the involved parties, along with the project's financial circumstances.

Adopting probabilistic estimation provides a more realistic perspective, making the **traditional** concept of cost **overrun less relevant**.

CONCLUSIONS

- Modeling the construction process is achieved through **work breakdown structure** (WBS).
- **PERT** distributions are utilized to represent the uncertainty in the duration of unit activities.
- The main components of **construction performance variability** are:
 - ✓ Typical performance variability
 - ✓ Minor machinery delays
 - ✓ Minor performance delays
- Geological uncertainties are modeled using **Metropolis-Hastings algorithm** within the framework of Markov Chain Monte Carlo (MCMC) simulation.
- **Disruptive events** and their consequences are represented as **stochastic** variables.

FUTURE WORK

- Modeling the **proportions** of different classes of production activities $(p_{a,k})$ as **stochastic** variables.
- Further research on the effect of **spatial correlation** (selection of δ or r) on the accuracy of the results
- The variability in **construction performance** for tunneling methods **other** than drill & blast.
- Adjusting the model for **cost** estimation and analyzing the effect of various scenarios on project performance

Thank you for your attendance